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Abstract. We consider the problem of routing a message in a mesh
network with faulty nodes. The number and positions of faulty nodes is
unknown. It is known that a flooding strategy like expanding ring search
can route a message in the minimum number of steps h while it causes a
traffic (i.e. the total number of messages) of O(h2). For optimizing traffic
a single-path strategy is optimal producing traffic O(p + h), where p is
the perimeter length of the barriers formed by the faulty nodes. There-
fore, we define the comparative traffic ratio as a quotient over p + h
and the competitive time ratio as a quotient over h. Optimal algorithms
with constant ratios are known for time and traffic, but not for both. We
are interested in optimizing both parameters and define the combined
comparative ratio as the maximum of competitive time ratio and com-
parative traffic ratio. Single-path strategies using the right-hand rule for
traversing barriers as well as multi-path strategies like expanding ring
search have a combined comparative ratio of Θ(h). It is an open ques-
tion whether there exists an online routing strategy optimizing time and
traffic for meshes with an unknown set of faulty nodes. We present an on-
line strategy for routing with faulty nodes providing sub-linear combined

comparative ratio of h
O

“q
log log h

log h

”
.

1 Introduction

The problem of routing in mesh networks has been extensively studied. Even if
the mesh contains faulty nodes, standard routing techniques can be applied. But
as an online problem, where the location of faulty nodes is unknown, this task
becomes challenging, because some communication overhead has to be invested
for the exploration of the network and it is not clear, how much exploration is
worth the effort. With this formulation of the problem, online route discovery
gets related to graph exploration and motion planning problems. The definition
of an appropriate measure for analyzing the efficiency and the design of an
algorithm that beats known routing techniques is the contribution of this paper.
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We consider the problem of routing (i.e. route discovery) in a mesh network
with faulty nodes. If a node fails, then only the direct neighbors can detect this
failure. The information about a failure can be spread in the network, but this
produces unnecessary communication overhead, if there is no demand for routing
a message. Therefore we concentrate on a reactive route discovery, which implies
that the locations of the faulty nodes are not known in advance: The routing
algorithm has no global knowledge and must solve the problem online, i.e. it
can send a message in a promising direction but it does not know whether the
target can be reached or the message gets stuck in a labyrinth of faulty nodes.
As groups of faulty nodes can obstruct a path leading to the target, we call them
barriers. If there are barriers, the routing algorithm has to perform some kind of
exploration, i.e. some paths are possibly dead ends so that other paths have to be
investigated. This exploration can be done sequentially which is time-consuming
or in parallel which increases the traffic (i.e. the total number of messages used).

An example for a sequential strategy is the following barrier traversal algo-
rithm: (1.) Follow the straight line connecting source and target node. (2.) If a
barrier is in the way, then traverse the barrier, remember all points where the
straight line is crossed, and resume step 1 at that crossing point that is nearest
to the target. This algorithm needs O(h + p) steps, where h is the length of the
shortest barrier-free path and p the sum of the perimeter lengths of all barriers.
This bound holds also for the traffic, because this is a single-path strategy. One
can show, that this traffic bound is optimal. An example for a multi-path strat-
egy is expanding ring search, which is nothing more than to start flooding with
a restricted search depth and repeat flooding while doubling the search depth
until the destination is reached. This strategy is asymptotically time-optimal,
but it causes a traffic of O(h2), regardless of the presence of faulty nodes.

We observe that both approaches are efficient with respect to either time or
traffic. The problem is to find an appropriate measure to address both the time
and the traffic efficiency. We introduce the combined comparative ratio, which
is motivated by the following two observations: The first observation is that the
shortest barrier-free path can be lengthened by adding faulty nodes that cause
a detour; this affects the time behavior. We use the so-called competitive ratio
[4] which compares the performance of the algorithm with the optimal offline
solution: The competitive time ratio is the ratio of routing time and optimal
time. The second observation is that additional barriers increase the exploration
costs; this affects the traffic efficiency. Here, by a comparison with the best offline
strategy the exploration costs would be disregarded. So we use a comparative
ratio which compares the traffic caused by the algorithm with the online lower
bound for traffic of O(h + p). Finally, the combined comparative ratio is the
maximum of time and traffic ratio. These ratios are defined in Section 3.

Under this measure the disadvantages of the two strategies described above,
namely that time is optimized at the expense of the traffic or vice versa, can
be expressed: Both strategies have a linear combined comparative ratio. In this
paper we present an algorithm that has a sub-linear combined comparative ratio.
The algorithm is described and analyzed in Section 4.



1.1 Related Work

The routing problem in computer networks, even if restricted to two-dimensional
meshes, can be investigated under various aspects, like fault-tolerance, reliability
of the message delivery, message size, complexity of a pre-routing stage etc. In
this paper we focus on fault-tolerance, routing as an online problem, competitive
analysis, and traffic efficiency with respect to the difficulty of the scenario. These
aspects are not only regarded in the field of networking.

A similar model is used by Zakrevski and Karpovski [19]. They also inves-
tigate the routing problem for two-dimensional meshes under the store-and-
forward model and present a routing algorithm that is based on constructing
fault-free rectangular clusters in an offline pre-routing stage. Connections be-
tween these clusters are stored in a graph which is used in the routing stage.

Wu [17] presents algorithms for two-dimensional meshes which use only local
information and need no pre-routing stage. The faulty regions in the mesh are
assumed to be be rectangular blocks. In [18] Wu and Jiang present a distributed
algorithm that constructs convex polygons from arbitrary fault regions by ex-
cluding nodes from the routing process. This is advantageous in the wormhole
routing model, because it helps to reduce the number of virtual channels. We
will not deal with virtual channels and deadlock-freedom as we consider the
store-and-forward model. Faulty mesh networks have been studied in the field
of parallel computing, e.g. by Cole et al. [6]. Here, the ability of a network to
tolerate faults and emulate the original network is studied. The general goal
is the construction of a routing scheme rather than performing an online path
selection.

The problem of finding a target in an unknown environment has been inves-
tigated in position-based routing as well as in online robot motion planning.

Position-based routing is a reactive routing used in wireless networks, where
the nodes are equipped with a positioning system, such that a message can be
forwarded in the direction of the target (see [12] for a survey). Due to the limited
range of the radio transceivers, there are local minima and messages have to be
routed around void regions (an analog to the fault regions in the mesh network).
There are various single-path strategies, e.g. [8, 5, 9]. Position-based strategies
have been mainly analyzed in a worst case setting, i.e. the void regions have been
constructed such that the connections form a labyrinth. In this case the benefit of
a single-path strategy, namely the traffic efficiency compared to flooding, ceases.
The algorithm presented in this paper is a compromise of single-path routing
and flooding. By analyzing the time in a competitive manner and by including
the perimeters of fault regions we can express performance beyond the worst
case point of view. This paper improves the results of the authors presented in
[15] where a combined comparative ratio of O(h1/2) has been shown.

In online robot motion planning, the task is to guide a robot from a start
point to a target in a scenario with unknown obstacles. This is analogous to the
position-based routing problem, except for the possibility to duplicate messages
in networks. The motion planning problem for an unknown environment is also
known as “online searching” or “online navigation” (see [2] for a survey). It has



been addressed by Lumelsky and Stepanov [11] that the performance of naviga-
tion strategies depends on the obstacles in the scenario. The proposed strategies
are also suitable for traversing mazes. In such cases, and also in some position-
based routing strategies, the well known right-hand rule is used: By keeping the
right hand always in touch of the wall, one will find the way out of the maze.
See [10, 14] for an overview of maze traversal algorithms. Analog to the network
model with rectangular fault blocks described in [17], there are robot navigation
strategies for obstacles of rectangular or polygonal shape. A competitive analysis
of such algorithms is presented by Papadimitriou and Yannakakis [13] and Blum,
Raghavan and Schieber [3], where the ratio of the length of the path chosen by
the algorithm and the shortest barrier-free path is considered as performance
measure. This complies with the most common definition of the competitive
ratio. Lumelsky and Stepanov [11] as well as Angluin, Westbrook and Zhu [1]
use a modified competitive measure that uses the sum of the perimeters of the
obstacles in the scene instead of the optimal path length as a benchmark. In this
paper we use the competitive ratio for the length of the routing path — which
is, here, regarded as routing time. For the induced traffic, we use a comparative
measure that credits the cost of exploring new obstacles (which in fact every
online algorithm has to pay) to the algorithm (cf. Section 3).

The problem studied in this paper has a strong relation to online search and
navigation problems. However, it is not clear how unbounded parallelism can be
modelled for robot navigation problems in a reasonable way — usually naviga-
tion strategies are only considered for a constant number of robots. Therefore,
we consider a mesh network with faulty parts as underlying model, which en-
ables us to study the impact of parallelism on the time needed for reaching the
destination.

2 Barriers, Borders and Traversal

In this paper we consider a two-dimensional mesh network with faulty nodes.
The network is defined by a set of nodes V ⊆ N × N and a set of edges E :=
{(v, w) : v, w ∈ V ∧ |vx − wx| + |vy − wy| = 1}. A node v is identified by its
position (vx, vy) ∈ N× N in the mesh. There is no restriction on the size of the
network, because we analyze time and traffic with respect to the position of the
given start and target node in the network. We will see that the major impact
on the efficiency of the routing algorithm is not given by the size of the network.

We assume a synchronized communication: Each message transmission to a
neighboring node takes one time step. For multi-hop communication we assume
the messages to be transported in a store-and-forward fashion. We also assume
that the nodes do not fail while a message is being transported — otherwise a
node could take over a message and then break down. However, there is no global
knowledge about faulty nodes. Only adjacent nodes can determine whether a
node is faulty.

Important terms and definitions: The network contains active (func-
tioning) and faulty nodes. Faulty nodes which are orthogonally or diagonally



neighboring form a barrier. A barrier consists only of faulty nodes and is not
connected to or overlapping with other barriers. Active nodes adjacent to faulty
nodes are called border nodes. All the nodes in the neighborhood (orthogonally
or diagonally) of a barrier B form the perimeter of B. A path around a barrier
in (counter-)clockwise order is called a right-hand (left-hand) traversal path, if
every border node is visited and only nodes in the perimeter of B are used.
The perimeter size p(B) of a barrier B is the number of directed edges of the
traversal path. The total perimeter size is p :=

∑
i∈N p(Bi). The perimeter size

is the number of steps required to send a message from a border node around
the barrier and back to the origin, whereby each border node of the barrier is
visited. It reflects the time consumption of finding a detour around the barrier.

3 Competitive and Comparative Ratios

When designing online algorithms one typically asks for the best solution an
algorithm can provide online or even offline. The comparison of the performance
of an (online) algorithm with the performance of an optimal offline algorithm is
called competitive analysis (see [4]). In faulty mesh networks the offline algorithm
has global knowledge and can deliver the message on the shortest barrier-free
path (we denote the length of this path with h). Therefore, both the offline traffic
and the offline time bound is h. Comparing the traffic of an online algorithm with
this lower bound yields a competitive ratio that is not very informative because it
disregards the cost of exploration. In fact every online algorithm produces traffic
of Ω(h + p) in some worst case situation: Consider a scenario where the faulty
nodes form long corridors (containing active nodes). The source node sees only
the entrances of these corridors. Yet, only one corridor leads to the target; the
others are dead ends. Every online routing strategy has to examine the corridors
(i.e. explore all the barriers), because in the worst case the exit is at the corridor
which is examined as the last. This consideration leads to a lower traffic bound
of Ω(h+p), regardless whether the exploration is done sequentially or in parallel.

The optimal time behavior depends on the type of strategy: A single-path
strategy has to traverse the barriers sequentially. This leads to a lower time
bound of Ω(h + p) for all single-path strategies. A multi-path strategy like ex-
panding ring search (repeated flooding with increasing search depth) can do this
exploration in parallel. The trivial lower bound of Ω(h) can be achieved using
such a strategy.

Time Traffic
Online lower bound, single-path Ω(h + p) Ω(h + p)
Online lower bound, multi-path Ω(h) Ω(h + p)
Best offline solution h h

For the time analysis, we use the performance of the best offline algorithm as a
benchmark. Regarding time, the best offline performance is of the same order as
the online lower bound.



Definition 1. An algorithm A has a competitive ratio of c, if ∀x ∈ I : CA(x) ≤
c · Copt(x), where I is the set of all instances of the problem, CA(x) the cost of
algorithm A on input x and Copt(x) the cost of an optimal offline algorithm on
the same input.

Definition 2. Let h be the length of the shortest barrier-free path between source
and target. A routing algorithm has competitive time ratio Rt := T/h if the
message delivery is performed in T steps.

Regarding traffic, a comparison with the best offline behavior would be unfair,
because no online algorithm can reach this bound. So, we define a comparative
ratio based on a class of instances of the problem, which is a modification of
the comparative ratio introduced by Koutsoupias and Papadimitriou [7]: In this
paper, we compare the algorithm A w.r.t. the competing algorithm B using
the cost of each algorithm in the worst case of a class of instances instead of
comparing both algorithms w.r.t. a particular instance that causes the worst case
ratio. The reason is the following: On the one hand for every online algorithm
A there is a placement of barriers with perimeter size p such that A is forced to
pay extra cost O(p) (cf. the labyrinth scenario described above). On the other
hand in the class of online algorithms there is always one algorithm B that uses
the path which is the shortest path in this particular scenario. Therefore B has
extra knowledge of the scenario.

Definition 3. An algorithm A is has a comparative ratio f(P ), if

∀p1 . . . pn ∈ P : max
x∈IP

CA(x) ≤ f(P ) · min
B∈B

max
x∈IP

CB(x),

where IP is the set of instances with can be described by the parameter set P ,
CA(x) the cost of algorithm A and CB(x) the cost of an algorithm B from the
class of online algorithms B.

With this definition we address the difficulty that is caused by a certain class
of scenarios that can be described in terms of the two parameters h and p.
For any such instance the online traffic bound is minB∈B maxx∈I{h,p} CB(x) =
Θ(h + p). Note, that for any choice of a scenario one can find an optimal offline
algorithm:maxx∈I{h,p} minB∈B CB(x) = h. This requires the modification of the
comparative ratio in [7] in order to obtain a fair measure. So, we use the online
lower bound for traffic to define the comparative traffic ratio.

Definition 4. Let h be the length of the shortest barrier-free path between source
and target and p the total perimeter size. A routing algorithm has comparative
traffic ratio RTr := M/(h + p) if the algorithm needs altogether M messages.

Under these ratios we can formalize the intuition telling that flooding as a multi-
path strategy performs well in mazes and badly in open space, while some
single-path strategy performs well in open space, but bad in mazes. The fol-
lowing table shows the competitive time ratio Rt and the comparative traffic
ratio RTr of a single-path and a multi-path strategy. We consider the barrier



traversal algorithm described in Section 1 as traffic-optimal single-path strategy,
and expanding ring search as time-optimal multi-path strategy.

Multi-path Rt RTr

General O(h)
h

O(h2)
h+p

Open space (p < h) O(1) O(h)
Maze (p = h2) O(1) O(1)

Single-path Rt RTr

General O(h+p)
h

O(h+p)
h+p

Open space (p < h) O(1) O(1)
Maze (p = h2) O(h) O(1)

This comparison shows that by these basic strategies the time is optimized at
the expense of the traffic or vice versa. To address both the time and the traffic
efficiency, we define the combined comparative ratio:
Definition 5. The combined comparative ratio is the maximum of the compet-
itive time ratio and the comparative traffic ratio: Rc := max{Rt,RTr}
For both strategies compared above this ratio is linear, i.e. Rc = O(h).

4 The Algorithm

The basic idea of the routing algorithm is to use flooding only if necessary. There-
for we identify regions where flooding is affordable. This is done by a subdivision
(partitioning) of a quadratic search area into smaller squares. Messages are sent
in parallel to each square using only paths on the borders of the squares. If a
message on such a path encounters a barrier, it tries to circumvent the barrier in
the interior of a square. However, if too many barrier nodes are detected while
traversing the border of the barrier, then the algorithm floods the whole square.

4.1 Incremental BFS

We observe that flooding defines a bread-first search (BFS) tree by the message
paths. The BFS tree contains all the active nodes that are reachable from the
root node. Obviously, both the size and the depth of the BFS tree are bounded
by the number of nodes in the network. We use an incremental BFS which works
in log d(T ) iterations, where d(T ) is the depth of the BFS tree T : In the i-th
iteration BFS is started with a search depth restricted to 2i.

In every iteration i we observe open paths and closed paths in the tree. Open
paths are paths with length larger than 2i where the exploration is stopped after
2i steps because of the search depth restriction. Closed paths end in a leaf of
the tree. In the next iteration (assumed that the target is not found in this
iteration) we do not need to investigate nodes on closed paths again. Thus, we
have to remember and revisit only open paths for continuing the search. The
following lemma shows that the steps needed for this BFS strategy are linear in
the size of the tree.

Lemma 1. Given a tree T , let Ti denote a sub-graph of T which contains all
paths from the root to a leaf with length greater than 2i, which are pruned at depth
2i−1. Then for all trees T with depth d(T ) it holds

∑log d(T )
i=0 s(Ti) ≤ 3 s(T ),

where s(T ) denotes the size of the tree, i.e. the number of nodes.

A proof is given in [16].



4.2 The Online Frame Multicast Problem

In the following we define a multicast problem for a quadratic mesh network.
The solution of this problem leads to the solution of the routing problem.

Definition 6. The frame of a g × g mesh is the set of framing nodes F =
{v ∈ Vg×g : vx ∈ {1, g} ∨ vy ∈ {1, g}}. For a g × g mesh and a set of entry
nodes s1, . . . , sk ∈ F , the frame multicast problem is to multicast a message
(starting from the entry nodes) to all nodes u on the frame which are reachable,
i.e. u ∈ F ∧ ∃si : dist(si, u) ≤ g2 where dist(si, u) denotes the length of the
shortest barrier-free path from si to u.

Definition 7. Given a g×g mesh with entry nodes s1, . . . , sk which are triggered
at certain time points t1, . . . , tk. A routing scheme is called c-time-competitive
if for each active node u on the frame of the mesh a message is delivered to u in
at most mini∈[k]{ti + c · dist(si, u)} steps where dist(si, u) denotes the length of
the shortest barrier-free path from si to u.

Obviously, a simple flooding algorithm is 1-time-competitive. But it needs O(g2)
messages, regardless whether few or many barrier nodes are involved. With the
following algorithm we can reduce the traffic with only constant factor slow down.

The Traverse and Search Algorithm The basic idea of the Traverse and
Search algorithm for the online frame multicast problem is to traverse the frame
and start a breadth-first search if a barrier obstructs the traversal. The algorithm
works as follows:

The message delivery is started at each of the entry nodes as soon as they
are triggered. An entry node s sends two messages in both directions along the
frame, i.e. a message is forwarded to both neighboring frame nodes (if present)
that is in turn forwarded to other frame nodes (frame traversal). If the message is
stopped because of a barrier (i.e. a frame node is faulty) then a flooding process
is started in order to circumvent the barrier and return to the frame. We call
the nodes that coordinate the flooding process exploration nodes (cf. Figure 2).

For the flooding process we use the idea of the incremental BFS described in
Section 4.1, i.e. flooding is started in consecutive rounds until the newly found
barriers are small or until the flooded area cannot be extended anymore. In the
i-th round the search depth is restricted to 2i+1. This is sufficient to circumvent
a single faulty frame node in the first round (i = 1). If in round i the number
of border nodes bi is greater than a constant fraction of the search depth α2i

with 0 < α < 1 then flooding is re-started in the next round with doubled search
depth. Therefor it is necessary to report the number of flooded border nodes (i.e.
active nodes adjacent to barrier nodes) to the entry node. These reply messages
are sent to the entry node using the reverse of the flooding paths, which are
defined by the BFS tree. At the branching points of the BFS tree the replies from
all branches are collected and merged. This collection process behaves like the
BFS in reverse time order. So, the traffic for collecting information corresponds
to the forward search of BFS and is increased only by a factor of 2.
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Fig. 1. Optimal routing path from s
to t in a mesh network with faulty
nodes (black)
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Fig. 2. Execution of the Traverse and Search
Algorithm. Entry node s, exploration nodes
e1, e2, explored nodes: light background, occu-
pied nodes: dark background.

The open paths (see Section 4.1) in the BFS tree are used for flooding a
greater area in the next round. If only small barriers are discovered then the
flooding process is aborted. Then the flooded frame nodes at which the search
depth is reached continue the frame traversal. In some situations the flooding
process is started concurrently from different locations. So we have to ensure that
the same regions are not flooded too often by different entry nodes. Otherwise the
traffic would disproportionately increase. But if we refrain from flooding a region
twice then the flooded regions of one entry node can block the flooding process
of another entry node, which would affect the time behavior. Our solution to
this problem is as follows: When a node is flooded for the first time, it is marked
as explored. When it is flooded for the second time (because it is part of an open
path in the BFS tree) it is marked as occupied. Explored nodes may be explored
again by other exploration nodes, but it is forbidden to flood any occupied node
again. These two marks are only valid for a specific round of the BFS, that
corresponds to a specific search depth. This way we only forbid to flood a region
twice with the same search depth.

Lemma 2. The Traverse and Search algorithm is O(1)-time-competitive.

Lemma 3. Given a g × g mesh with total perimeter size p. The Traverse and
Search algorithm produces traffic O(g + min{g2 log g, p2 log g}).

Proof sketch: The time and traffic analysis is based on the following ideas: If
we cannot approximate the shortest path by simply traversing the frame then
we use the incremental BFS which has a linear asymptotic behavior. Thus, we
achieve a constant competitive time ratio. The bound for the number of messages
is derived as follows: We allow to flood an area that is quadratic in the number
of discovered border nodes. But this area is also bounded by the size of the g×g
mesh. The search from concurrent entry points costs a logarithmic factor. The
traversal of the frame costs additional g messages. Complete proofs for Lemma 2
and Lemma 3 are given in [16].



4.3 Grid Subdivision

In order to reduce traffic asymptotically while keeping a constant competitive
time behavior, we subdivide an area into smaller squares and apply the Traverse
and Search algorithm in each square of this grid subdivision. This technique can
be used instead of flooding, which is used by the incremental BFS.

Lemma 4. Given a g1 × g1 mesh with total perimeter size p. For all g0 with
1 ≤ g0 ≤ g1 there is a O(1)-time-competitive algorithm for the online frame
multicast problem with traffic O( g1

2

g0
+ p · g0 log g0).

A proof is given in [16].

This leads to a modified Traverse and Search algorithm, which is similar to the
algorithm described in Section 4.2 except for the BFS: The multicast process is
started with the level-1 square and begins with the frame traversal. If a barrier
prevents a frame node from proceeding with the frame traversal, the frame node
becomes exploration node and starts the modified BFS, which we call level-1
BFS. The flooding process now uses only the nodes on the grid, i.e. only the
frame nodes of level-0 squares are “flooded”, whereas the interior of the frames
is controlled by the Traverse and Search algorithm on level 0.

The level-1 BFS tree which is defined by the flooding process consists only
of level-0 frame nodes. Especially the leaves of the tree are frame nodes, namely
the entry nodes of level-0 squares, because at such points the control is given
to the Traverse and Search algorithm on level 0. The BFS-tree will be used
for gathering information (newly found border nodes and open paths) for the
coordinating level-1 entry nodes.

4.4 Recursive Subdivision

A further reduction of the traffic can be achieved, if we use the subdivision
technique to replace the flooding phase of the Traverse and Seach Algorithm
and apply this technique recursively.

Let ` be the number of recursive subdivisions, g` the edge length of a top
level square. Beginning with the top-level squares, each gi × gi square is sub-
divided into squares with edge length gi−1 (i = 1, ..., `). On the lowest level
the Traverse and Search algorithm is applied, which produces a traffic of g0 +
min{g0

2 log g0, p
2 log g0}, where p is the perimeter size in the g0 × g0 square.

Traffic in the gi×gi square is caused by the trials of surrounding the square and
— if the number of thereby observed border nodes is too large — by covering
the corresponding area with gi−1 × gi−1 sub-squares.

We use the following notation: tr` denotes the traffic induced by a single
g` × g` square; Tr`(a) denotes the traffic of an area a which is dissected by
level-` squares. Define G(`) :=

∑`
i=1

gi

gi−1

∏`
j=i log gj + g0

∏`
i=0 log gi

Theorem 1. Given a g × g mesh with total perimeter size p. For all gi with
1 ≤ g0 ≤ ... ≤ g` there is a O(c`)-time-competitive algorithm for the online
frame multicast problem with traffic O( g2

g`
+ p ·G(`)).



A proof is given in [16]. Note, that the recursive subdivision of an area a with `
levels produces traffic Tr`(a) = O( a

g`
+ p ·G(`)).

4.5 Expanding Grid

The solution of the frame multicast problem enables us to solve the routing prob-
lem: For routing a message from s to t, we first define four connected quadratic
subnetworks in the environment of s and t which are connected (see Figure 3);
then we apply the modified Traverse and Search algorithm to the quadratic sub-
networks to route a message. Again we use the idea of expanding ring search:
We begin with a small, restricted region which is enlarged if the target cannot
be reached because of a barrier (see Figure 4).
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Fig. 3. Search area with grid subdivision
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Fig. 4. Enlargement of the search area

Theorem 2. Given a mesh network of arbitrary size, a source node s and a
target node t. There is a O(c`)-time-competitive routing algorithm with traffic
O(h2/g` + p ·G(`)), where h is the shortest possible hop distance between s and
t, and p the total perimeter size; g` and G(`) are defined as in Section 4.4.

A proof is given in [16].

Theorem 3. For g` = Θ(h) and gi = h
(i+1)
(`+1) , i = 0, ..., `−1 the algorithm of The-

orem 2 needs time h·c
q

log h
log log h and causes traffic O

(
h + p

√
log h

log log h h

q
4 log log h

log h

)
.

Proof. We set gi := h(i+1)/(`+1) so that gi/gi−1 = h1/(`+1):
G(`) =

∑`
i=1 h

1
`+1

∏`
j=i log h

j+1
`+1 + h

1
`+1

∏`
i=0 log h

i+1
`+1 ≤ (` + 1) h

1
`+1 log`+1 h.

In order to minimize this term we set h
1

`+1 = log`+1 h. By using
√

log h
log log h = `+1

we obtain the traffic of the routing algorithm. ut



Corollary 1. The routing algorithm of Theorem 3 has competitive time ratio of

c

q
log h

log log h and comparative traffic ratio of O
(√

log h
log log h h

q
4 log log h

log h

)
, yielding a

sub-linear combined comparative ratio of h
O

“q
log log h

log h

”
, which is in o(hε) for all

ε > 0.
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