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Abstract. An n-node tree has to be explored by a group of k mobile
robots deployed initially at the root. Robots traverse the edges of the
tree until all nodes are visited. We would like to minimize maximal dis-
tance traveled by each robot (e.g. to preserve the battery power). First,
we assume that a tree is known in advance. For this NP-hard problem we
present a 2-approximation. Moreover, we present an optimal algorithm
for a case where k is constant.

From the 2-approximation algorithm we develop a fast 8-competitive
online algorithm, which does not require a previous knowledge of the
tree and collects information during the exploration. Furthermore, our
online algorithm is distributed and uses only a local communication. We
show a lower bound of 1.5 for the competitive ratio of any deterministic
online algorithm.

1 Introduction

Suppose, we conduct a Mars expedition by sending a group of robots to this
distant planet. The team lands at the bottom of an unknown crater. Each mobile
robot is equipped with a wireless communication device and batteries for energy
supply. The goal of the first mission is to explore the unknown terrain minimizing
the energy consumption of each robot.

Since it takes many minutes for a signal to reach the Earth, the remote coor-
dination of the exploration is impossible. So the robots organize themselves as a
team and using local distributed strategies complete the mission and return to
the landing zone in order to send results (the map of the terrain) to the Earth.

In this paper we investigate the problem of exploring graphs by a group of
wireless mobile robots. We assume that there is no central authority, which
could coordinate the robots. So the team has to organize itself in order to jointly
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explore the terrain. All decisions are made locally without any prior knowl-
edge of the terrain’s complexity, as it is always the case for such online prob-
lem. The global (optimal) solution emerges from decisions made locally by the
robots.

We investigate a terrain with a tree topology. An n-node tree has to be ex-
plored by a group of k mobile robots initially deployed at the root. Robots
traverse the edges of the tree until all nodes are visited. The goal is to minimize
the maximal distance traveled by one robot.

The standard approach in the competitive analysis [1] is to compare results of
our online algorithm to the results of the optimal offline algorithm which knows
the tree in advance.

1.1 The Model

We assume we are given a tree T with a root r and D is the maximal distance
(number of edges) from r to any node in T , i.e. the height of the tree. The
team of k robots has to explore the tree in such a way that robots start and
finish at r and jointly traverse all edges of the tree. We minimize the maximal
distance traveled by each robot. This problem can be defined in the following
way [2]:

Definition 1 (of k-MIN-RE problem).
Instance: an undirected tree T = (V, E), |V | = n, a fixed node r ∈ V , an

integer k > 0
Solution: tours C1, C2, . . . Ck, where

⋃k
i=1 Ci = E and each tour contains

the node r
Goal: minimize cmax = max{|Ci| : i = 1, . . . k}

For the offline approximation, we assume that the tree T is known in advance
and we construct tours Ci in polynomial time, so that cmax is close to the optimal
value.

In the online model we assume that robots initially have no knowledge of
T and a robot in a node v of T sees only the outgoing ports, i.e. beginnings
of edges adjacent to v. It does not see the other node adjacent to any edge
leaving v. Moreover, we have discrete and synchronous time and each time step
consists of the following events:

1. a robot placed at some node v gets the information on all outgoing ports of
that node,

2. a robot can communicate with other robots at distance at most 1 (or it can
read or write some information on the landmark at node v),

3. a robot may choose either to wait or to traverse an edge from the chosen
port.

Waiting and communicating does not induce any energy cost, while travers-
ing an edge costs one unit. The overall cost of the exploration is the maximal
distance traveled by one robot, which describes maximal energy used by one
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robot. We compare this cost to the cost of the optimal algorithm, which knows
T in advance.

1.2 Related Work

An exploration of unknown environments is widely studied (see [3] for a survey).
The simplest case is when a mobile robot is initially placed at some node of
a graph. If the graph is unlabeled, a robot cannot explore the graph alone.
Hence, in [4] the robot marks the nodes of the graph with the pebbles in order
to recognize visited nodes.

In [5] one robot traverses an arbitrary graph in a piecemeal manner and in [6]
some natural exploration algorithms are presented (DFS) and lower bounds
for exploration are established. In [7] the cost (penalty) is measured as a ra-
tio between the number of edge traversals of an algorithm and the overall
number of edges m in a graph. There, the authors develop an algorithm with
penalty O(m).

The single robot approach can be extended by introducing a larger number of
robots and exploring the graph by a group of them. In [8] a team of two robots
explores an unlabeled directed graph in time O(d2n5) with high probability,
where d is the maximal degree in the graph.

Profits from a collective exploration of trees are investigated in [2]. They prove
O(D + n/ log k) running time of their algorithm, which gives a multiplicative
overhead of O(k/ log k) for the time of exploration comparing to the time of an
optimal algorithm which knows the tree. They also prove lower bound of 2−1/k
for this ratio.

In [9] they present an (2−2/(k+1))-approximation algorithm for k-traveling
salesman problem for edge-weighted trees with running time O(kk−1 · nk−1).
In [10] the running time is improved to O((k − 1)! · n). The k-traveling sales-
man problem is similar to our model, but it does not constrain the the starting
positions of the robots.

The problem of minimizing the maximal distance traveled by a single robot in
a collective exploration of an unweighted tree is shown to be NP-hard. For trees
with weighted edges it is NP-hard too and remains NP-hard even for a constant
number of robots [11].

1.3 Our Results

In this paper we focus on the exploration of an arbitrary, unweighted tree. Unlike
in [9] and [10] we constrain positions of robots to one node in the tree (i.e. to the
root). As a first result we show how to compute in polynomial time the optimal
tours for the problem of the exploration with a fixed number of robots k.

Moreover, we show a 2-approximation algorithm for the problem with an
arbitrary number of robots which runs in O(k · max{D, (n − 1)/k}) time. This
significantly improves the time comparing to results of [9] and [10].

Furthermore, from our 2-approximation we develop an 8-competitive algo-
rithm with the same running time for the online problem (Sect. 1.1). We also
prove a lower bound of 1.5 for the online problem.
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2 The Complexity of k-MIN-RE

We start with an observation that k-MIN-RE is intractable [2]. The following
remark is a result of a simple reduction of k-MIN-RE to the 3-PARTITION
problem.

Remark 1. The decision version of the k-MIN-RE problem is NP-hard.

We show that for unweighted trees the problem becomes easy when we assume
that the number of robots is fixed. The algorithmDPExplore based on the dynamic
programing technique constructs a k-dimensional arrayAv of size n in a bottom-up
fashion for each node v. The element Av(a1, a2, . . . , ak) of the array is the sequence
(T1, T2, . . . , Tk) of subtrees, such that

⋃
Ti = Tv, Ti ⊂ Tv, v ∈ Ti and ai = |Ti| is

the number of edges in Ti. Each subtree defines a tour of a single robot.
The array Av is capable of storing all possible reasonable traversals of Tv

(and clearly includes the optimal one) by a group of k robots. The reasonable
traversals are those, which are optimal or can be used to construct the optimal
traversal. If there are many such traversals for fixed a1, a2, . . . , ak, then we take
any of them.

The algorithm DPExplore(v, T ) computes Av for any v and thus after com-
puting Ar, the OptFixed(v, T ) algorithm can easily find the optimal solution for
T = Tr by finding the cell of an array Ar with the best content. Pseudo-codes
for the algorithm and its subprocedures are depicted in Fig. 1, 2 and 3.

Extend(v, As)
foreach b1, . . . , bk where As(b1, . . . , bk) != ∅ do

(T1, . . . , Tk) ← As(b)
foreach bi > 0 do

b′
i ← bi + 1

T ′
i ← Ti ∪ {v}

A′(b′) ← (T ′
1, . . . , T

′
k)

return A′

Combine(Ax, Ay)
foreach a, b where Ax(a) != ∅ and Ay(b) != ∅ do

foreach 1 ≤ i ≤ k do ci ← ai + bi

A′(c) ← Ax(a) ∪ Ay(b)
return A′

Fig. 1. The Extend and Combine procedures

Lemma 1. The algorithm DPExplore(v,Tv) computes in O(n2k+2) time steps
the array Av, which contains all reasonable traversals of Tv.

Proof. For D = 0 the algorithm computes Ar such that Ar(0, . . . , 0) is a set of
k trees each containing only one node. Clearly this is an optimal solution for a
tree in height of 0.
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DPExplore(v, T )
if v has no children

Av(0, . . . , 0) ← the sequence of k trees consisting only of node v
else

foreach child s of v do As ← DPExplore(s,As)
foreach child s of v do A′

s ← Extend(v, As)
foreach child s of v do Av ← Combine(Av, A′

s)
return Av

Fig. 2. The DPExplore algorithm

OptFixed(v,T )
A ← DPExplore(v, T )
find (a1, . . . , ak) minimizing maxi{ai} for which A(a1, . . . , ak) != ∅
(T1, . . . , Tk) ← A(a1, . . . , ak)
return sequence of Ci described by a tree Ti

Fig. 3. The optimal polynomial algorithm for k-MIN-RE and fixed k

Suppose that T is h > 0 in height and DPExplore computes properly arrays
for all smaller subtrees. The root r of T has children s1, s2, . . . , sd where d is
the degree of r (clearly d > 0). Assume that As1 , As2 , . . . , Asd have already been
computed and contain all reasonable traversals of subtrees Tsi . The procedure
Extend(v, Asi) builds an array A′

si
, which contains all reasonable traversals of

subtree Tsi ∪ {v} for each i. The next d calls of procedure Combine(Av, Asi)
construct all reasonable traversals of T .

The upper bound for the number of nonempty elements in Av is nk. So, the
procedure Extend needs O(nk) time steps. The procedure Combine needs O(n2k)
time steps for the same reason, thus the algorithm DPExplore terminates after
O(n2k+2) time steps. %&
Lemma 2. The algorithm OptFixed(r, T ) computes an optimal solution to the
problem k-MIN-RE for a fixed k in a polynomial time.

Proof. The first step of OptFixed is a call to subalgorithm DPExplore which
computes in time O(n2k+2) the array A containing all reasonable traversals of T
(Lemma 1).

Then, the optimal traversal of T can be easily found in O(nk) time. This
implies that the OptFixed finds an optimal solution in O(n2k+2) time steps,
which is polynomial in the size of the tree. %&

3 The Approximation

In this section we present the algorithm which produces tours Ci in such a way
that cmax is only two times larger than the cost of the optimal tours. We need
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LeftWalker(r,t)
Perform t/2 steps of DFS using only unmarked edges and preferring
ports with the smallest IDs and then return to r. Mark each traversed
edge which does not lead to unmarked edges.

Fig. 4. The LeftWalker algorithm

the following simple procedure which is similar to the well-known Depth First
Search algorithm. It traverses the tree and marks some edges, which is described
in details on Fig. 4.

Let Tv denote the subtree rooted in v and Sv be the sequence of children of
v, such that for each s ∈ Sv the tree Ts contains an unmarked edge. We assume
that Sv is sorted in increasing order of IDs.

Furthermore, Bv = {(v, w) : w ∈ Sv} is a set of outgoing edges which lead to
subtrees containing unexplored edges. The following fact is straight-forward for
a DFS-kind algorithm.

Remark 2. For any v and s1, s2 ∈ Sv where id(s1) < id(s2) the LeftWalker will
not enter the Ts2 before completely marking all edges of Ts1

Let t = 4·max{D, (n−1)/k} and we sequentially run LeftWalker(r, t) on the same
tree k times. We show two lemmas concerning subsequent calls of LeftWalker(r, t)
(Fig. 5).

1st

2nd

3rd

Fig. 5. Subsequential calls of LeftWalker algorithm

Lemma 3. At the beginning of any subsequent call of LeftWalker(r,t) the fol-
lowing assertion holds. For each v ∈ V at most one edge from the current set Bv

has been traversed by a robot. If there is such an edge in Bv, it must be (v, w)
where w is the node from the current Sv with the smallest ID.

Proof. Assume that for some v we have two traversed edges in the current Bv.
We denote these edges by (v, w1) and (v, w2) where w1, w2 ∈ Sv and (w.l.o.g)
the ID of the port connecting to w1 is smaller than the ID of the port connecting
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to w2. Then, there is an unexplored edge in both Tw1 and Tw2 . It means that in
some round in the past, LeftWalker started to explore ’right’ subtree Tw2 before
finishing Tw1 , which contradicts the Remark 2. %&

Lemma 4. If the next subsequent call of LeftWalker(r,t) does not finish the
exploration of T , it discovers at least max{D, (n− 1)/k} ’new’ edges which were
not traversed by any robot before.

Proof. Suppose that LeftWalker(r, t) explores the tree for the first time (first
subsequent call) and it will not finish the exploration in this round. Before it
starts returning to the root, its energy units are limited to t/2. It can traverse
each edge at most twice, so it will traverse at least t/4 ’new’ edges, before
reaching the limit.

Suppose that it is a further subsequent call of LeftWalker, i.e. there was at
least one call before. Assume that the exploration will not be finished in this
round, so it will traverse exactly t/2 edges. We claim that at least t/4 of these
edges are ’new’, since at most t/4 of these edges were traversed before.

Indeed, from Lemma 3, we have that there is at most one such edge at arbi-
trary distance from the root r. This implies that there exist at most D ≤ t/4
such edges which have been already traversed and are not marked. %&

Basing on the LeftWalker and its properties we define the algorithm depicted in
Fig. 6, and in the following lemma we show that it produces a feasible solution.

2-ApproxAlg(T)
t=max{D, (n − 1)/k}
for i=1 to k do

Ci ← LeftWalker(r, 4t)

Fig. 6. The approximation algorithm

Lemma 5. For any tree T (V, E) with root r the algorithm produces a sequence
of paths Ci such that ⋃

Ci = E

and r belongs to each path described by Ci.

Proof. Clearly, r belongs to each path described by Ci, since LeftWalker(r, 4t)
starts and ends in the root. Furthermore, Lemma 4 guarantees that in each pass
LeftWalker(r, 4t) explores at least max{D, (n− 1)/k} ‘new’ edges or finishes the
exploration. This implies that k passes suffice to completely explore the tree
(k · max{D, (n − 1)/k} ≥ n − 1 ‘new’ edges traversed). %&

In the next lemma we show that the algorithm is an approximation of an optimal
solution, i.e. we show a lower bound of any feasible solution.
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Lemma 6. For every algorithm for k-MIN-RE there exists an index i such that
|Ci| ≥ 2 · t, where t = max{D, (n − 1)/k}.

Proof. Assume that for each i the size |Ci| < 2D. Then, the bottom of the tree
cannot be reached and at least one leaf cannot be explored. In the case, where
for each i, |Ci| < (2n − 2)/k, we have

∑k
i=1 |Ci| < 2n − 2 steps made, which is

not sufficient to explore any tree consisting of n nodes. %&

Our algorithm outputs in O(k·max{D, (n−1)/k}) time steps k feasible sequences
Ci (Lemma 5), such that |Ci| ≤ 4 · t and Lemma 6 states the lower bound of
2 · t for the optimal algorithm, which proves the approximation factor of 2 for
k-MIN-RE.

4 The Online Problem

As described in Sect. 1.1 in the online setting, we assume no previous knowledge
of the tree. The robots have to gather information on the terrain’s complexity
during the exploration. First, we show that no deterministic online algorithm can
be optimal and then, we develop the strategy which gives the close to optimal
solution. We apply the standard approach and we search in a binary way for the
appropriate value of s for the tree.

4.1 Lower Bound

The following lemma states a lower bound on the competitive ratio of any de-
terministic algorithm.

Lemma 7. Any deterministic online algorithm for k-MIN-RE has the compet-
itive ratio δ ≥ 1.5.

Proof. For an arbitrary deterministic algorithm A we will present a tree for
which A needs at least 6 · p energy units to explore and for which the optimal
offline solution needs only 4 · p energy units.

We construct a tree T which is an union of 2k − 2 paths of length p and one
path of length 2p. The tree T = (V, E), depicted in Fig. 7, is such that:

V = {r} ∪ {vi,j : 1 ≤ i ≤ p, 1 ≤ j ≤ 2k − 1} ∪ {vi,q : p + 1 ≤ i ≤ 2p + 2}

and
E = {(r, v1,j) : 1 ≤ j ≤ 2k − 1}

∪{(vi−1,j , vi,j) : 2 ≤ i ≤ p, 1 ≤ j ≤ 2k − 1}
∪{(vi−1,q, vi,q) : p + 1 ≤ i ≤ 2p + 2}

The parameter q is defined for A in such a way, that the node vp,q is visited by
a robot which has already visited another node on level p (a node from the set
{vp,j : 1 ≤ j ≤ 2k − 1}). We assume that q is the smallest number with this
property.
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p

p

r

1 2 vp,q 2k − 1

v2p,q

Fig. 7. The tree of lower bound

The offline algorithm may assign one robot to traverse the long path and all
other robots to traverse two short paths each. Thus, the tree is explored with an
energy of 4p per robot. Below we show that the deterministic online algorithm
A will need at least 6p energy units for at least one robot.

By the definition of q, A uses q − 1 robots and 2p energy per robot to visit
the first q − 1 dead ends and then return to r. Then one of these q − 1 robots
is sent to explore the long path. After the robot reaches node vp,q, it discovers
that this is the long path. It can not decide to explore this path (its total energy
consumption would grow up to 6p). It comes back to the root, thus some other
robot explores the long path. The yet unexplored long path has to be traversed
by the robot which has explored no edge before.

Let us sum up the energy the robots used so far. We have three groups of
robots:

2 robots with energy consumption of at least 4p (which are useless now),
q − 1 robots with energy consumption of at least 2p,
k − q − 1 robots which have used no energy.

There are 2k − 1 − q unexplored dead ends left, and even if the second group
explores q − 1 of them, there are still 2k − 2q unexplored short paths and only
k−q−1 robots which can explore them. Even if each robot takes two short paths,
running out the whole available energy, there will be at least one unexplored
path. Thus, the team will fail to explore the tree with an energy smaller than 6p.

%&

4.2 The Online Algorithm

Now we introduce a distributed online algorithm which uses LeftWalker routine
and explores an unknown tree.

Assume that robots have unique IDs from set [0, 1, . . . , k − 1]. The algorithm
to explore the tree is depicted in Fig. 8. In the following two lemmas we prove
the correctness and a good performance of the algorithm.
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WarningBee(r,k)
energy ← 1
while (tree is not completely explored){

energy ← energy · 2
wait( id · energy )
get list of the most left ports to unmarked edges from the robot id − 1
LeftWalker( r, energy )
wait( (k-id) · energy )

}

Fig. 8. The online parallel algorithm for a group of robots

Lemma 8. WarningBee terminates after )log(2t)*+1 rounds, and thus eventu-
ally it completely explores the tree with energy consumption of at most 16t units
per robot.

Proof. As we know from Sect. 3, running LeftWalker(r, 4t) sequentially k times
will completely explore the tree. This is the case in the )log(2t)* + 1 round of
WarningBee, where energy = 2$log(t)%+2 ≥ 4t. After all robots have completed
this round the whole tree is explored. This implies that WarningBee will ter-
minate after )log(2t)* + 1 rounds, where energy ≤ 8t. Summing up the overall
energy used in all rounds, we get at most 16t energy units per robot. %&

Lemma 9. WarningBee is 8-competitive for the online model.

Proof. Since the WarningBee uses at most 16t energy units (Lemma 8) and
optimal algorithm uses at least 2t energy units (Lemma 6) we have the bound
of 8 for the competitive ratio. %&

5 Conclusion

We have presented algorithms for exploration of trees with the goal of minimizing
maximal energy used by each robot.

The first two algorithms deal with the situation where the tree is known in
advance. The third one is online and it efficiently explores a tree not known in
advance. The online algorithm is distributed and uses only local communication.
Both algorithms are optimal up to a constant factor.

It turns out that the 8-competitive (energy) online algorithm, WarningBee,
uses at most O(k · D + n) time steps. WarningBee moves only one robot at a
time and therefore is not capable of optimizing the time of exploration, achieving
k-competitiveness in this model (time).

It is known that there is O(k/ log k) competitive online algorithm for opti-
mizing time [2]. At the moment there is a lower bound of 2 − 1/k, so there is a
huge gap left for further research.
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