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ABSTRACT
We present k-Flipper, a graph transformation algorithm that
transforms regular undirected graphs. Given a path of k +2
edges it interchanges the end vertices of the path. By def-
inition this operation preserves regularity and connectivity.
We show that every regular connected graph can be reached
by a series of these operations for all k ≥ 1. We use a ran-
domized version, called Random k-Flipper, in order to create
random regular connected undirected graphs that may serve
as a backbone for peer-to-peer networks. We prove for de-
gree d ∈ Ω(log n) that a series of O(dn) Random k-Flipper
operations with k ∈ Θ(d2n2 log 1/ε) transforms any graph
into an expander graph with high probability, i.e. 1−n−Θ(1).

The Random 1-Flipper is symmetric, i.e. the transforma-
tion probability from any labeled d-regular graph G to G′ is
equal to those from G′ to G. From this and the reachability
property we conclude that in the limit a series of Random
1-Flipper operations converges against an uniform probabil-
ity distribution over all connected labeled d-regular graphs.
For degree d ∈ ω(1) growing with the graph size this implies
that iteratively applying Random 1-Flipper transforms any
given graph into an expander asymptotically almost surely.

We use these operations as a maintenance operation for
a peer-to-peer network based on random regular connected
graphs that provides high robustness and recovers from de-
generate network structures by continuously applying these
random graph transformations. For this, we describe how
network operations for joining and leaving the network can
be designed and how the concurrency of the graph transfor-
mations can be handled.
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1. INTRODUCTION
Random processes in graphs, like random walks, have

been successfully studied for a long time [13]. Recently, the
interest of random processes transforming graphs into other
graphs has grown. Such processes bear the potential for
stabilizing distributed networks like peer-to-peer networks.
However, changing a graph can be irrevocable if the graph
represents a communication network, e.g. if an operation
disconnects nodes or sub-graphs from the graph.

For random walks in graphs one is interested whether the
corresponding Markov process converges to a stationary dis-
tribution and if, how fast and to which distribution. Some-
times the random walks give insight into the graph structure
like the PageRank algorithm [17]. For random transforma-
tions of graphs one is either interested in maintaining (truly)
random graphs or graphs which fulfill certain properties with
high probability.

As an example we refer to the JXTA-package of the SUN-
Java peer-to-peer network suite.1 As backbone the network
aspires a random graph by a random process. Experimen-
tal analysis shows that some parameters (the indegree) of
the resulting graph are Pareto distributed what is unlikely
for random graphs. Gnutella [6] in its first implementa-
tion used an insertion procedure aiming at constructing a
robust network structure with small diameter. Experimen-
tal analysis shows that random graphs with Pareto degree
distribution evolve [8]. In [14] query algorithms based on
multiple random walks are presented that resolve queries

1See http://www.jxta.org



almost as quickly as the flooding method of Gnutella while
reducing the network traffic by two orders of magnitude in
many cases. The authors note that among the various net-
work topologies considered, uniform random graphs yield
the best performance. In [9, 10] the reliability of such ran-
dom networks is affirmed.

In this paper we concentrate on the generation of d-regular
undirected connected graphs. There is a number of reasons
for this choice. These graphs describe the situation in peer-
to-peer networks where peers maintain bidirected connec-
tions and both peers are responsible for the link. A uniform
degree induces some fairness to the network since each peer
stores the same amount of network information. Further-
more, messages passed over a long random walk will pass
all peers with equal probability. For an excellent survey on
random regular graphs and their properties we refer to [21].

Little is known so far, whether the processes used in prac-
tice to maintain random graphs satisfy even minimal stan-
dards. We desire the following properties for random trans-
formations of graphs:

Soundness: No transformation maps to graphs which are
not in the domain space. For d-regular undirected
connected graphs, this means that each operation pre-
serves degree d at every node and there is not even
the slightest (small probability) chance to disconnect
parts from the graph.

Generality: The random transformation process does not
converge to a specific graph. All graphs are reachable
and in the limit all graphs occur with some non-zero
probability. This requirement can be tightened to uni-
form generality where in the limit all graphs occur with
the same probability.

Feasibility: The random transformation can be described
by a simple (distributed) routine changing only a small
number of edges of the graph. Its implementation in
a distributed network should be straightforward.

Convergence rate: Only a polynomial number of trans-
formations is necessary to achieve an approximation of
the ultimate distribution of all graphs.

Surprisingly, the process used in JXTA which is widely
used, has never been analyzed with respect to these features.
Identifying such transformations meeting all these require-
ments gives an approximate solution to the problem of com-
puting a random probability distribution over all graphs of
a kind, as being solved by Steger et al. [18] for the problem
of generating all d-regular random graphs.

The following random transformation for d-regular undi-
rected graphs without connectivity has been introduced by
McKay [15] and is used in [5] (there called “rewiring”).

Definition 1 (Simple Switching) Choose random edges
{u, v}, {u′, v′} of the graph G. If {u, v′} and {u′, v} do not
exist in G then erase {u, v}, {u′, v′} and insert edges {u, v′}
and {u′, v}.

In [16] Simple Switching is used to generate random d-
regular graphs with d ∈ O(n1/3) and it takes an expected
time of O(nd3) per graph to generate a uniform distribu-
tion over all d-regular graphs. Simple Switching preserves
the degree of each node but does not preserve connectivity.

Its convergence speed is polynomial in the number of nodes
which follows from the results of [4, 16].

Simple Switching is feasible if the graph is given as a data
structure on a single machine. However, when the graph
constitutes an interconnection network of computers, this
procedure is no more feasible. As long as all nodes are con-
nected one can choose random edges by performing a ran-
dom walk with an appropriate length, i.e. the mixing time
of the graph. But during these operations Simple Switch-
ing may disconnect parts from the network. Then, without
extra network connections the network cannot be rejoined
anymore. Our point is that feasibility in terms of distributed
algorithms implies maintaining connectivity at all stakes.

In this paper we present sound, general, feasible, quickly
converging transformations for d-regular random graphs. We
introduce a family of graph transformations, namely the k-
Flipper operations, for an integer k ≥ 1 and their random-
ized versions. Starting with an arbitrary d-regular connected
graph we repeatedly apply these operations. Thereby we
can guarantee the resulting graph to stay connected and d-
regular. Furthermore these operations will turn any graph
into an expander and introduce fresh randomness to the
graph which is especially helpful in dynamic graphs with a
changing node set. For the Random 1-Flipper we can prove
uniform generality, i.e. all connected d-regular graphs occur
with the same probability in the limit. To our knowledge
this gives the first solution to the problem of generating d-
regular connected graphs with labeled nodes with uniform
probability. As a consequence, expander graphs occur a.a.s.
if the degree is non-constant. Note that for the problem of
generating regular graphs with nearly uniform probability
distribution results have been known for a long time. Jer-
rum and Sinclair [7] give a generator for d-regular graphs on
n vertices which approximates the uniform probability dis-
tribution by a factor of 1 + ε and runs polynomial in n and
log 1/ε. This result was improved by Steger and Wormald
[18]. We are aware that a.a.s. all d-regular graphs are con-
nected and it is easy to use these algorithms to approximate
also d-regular connected graphs. However, their methods
cannot be applied in a networking concept.

It is not clear how fast the Random 1-Flipper produces
this uniform probability distribution. If we choose k ∈
Θ(d2n2 log 1/ε) we can show the convergence rate of the
Random k-Flipper. It turns out that after O(dn) Random
k-Flipper operations an expander graph is established with
high probability, i.e. 1− n−Θ(1).

We use these operations to provide a peer-to-peer network
based on random regular connected graphs that provides
high robustness and recovers from degenerate network struc-
tures by continuously applying these random graph transfor-
mations. For this, we discuss how the concurrency of these
graph transformations can be solved and how operations for
joining and leaving the network can be designed.

2. NOTATIONS
A d-regular undirected graph G = (V, E) is defined by a

finite node set V = {1, 2, 3, . . . , n} of size n and the edge set
E := {{u, v} : u, v ∈ V, u %= v} (of size dn/2) such that
each node is adjacent to exactly d edges. An undirected
graph is connected if for each pair of nodes of V there exists
a path using edges of E connecting these nodes. For v ∈
V we denote the set of nodes neighbored to v by N(v).
By log n := log2 n we mean the dual logarithm function.
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Figure 1: The 1-Flipper operation F 1
P .

In the following the term “with high probability” (w.h.p.)
describes the probability p ≥ 1 − n−c and “asymptotically
almost surely” (a.a.s) is the probability p ≥ 1− o(1).

3. UNIFORM GENERATION OF
REGULAR CONNECTED GRAPHS

In this section we present an elegant method to gener-
ate an uniform probability distribution of regular connected
graphs in the limit. For this, we introduce the 1-Flipper and
its randomized version.

Definition 2 (1-Flipper) Consider a d-regular undirected
graph G = (V, E) and four distinct nodes u1, u2, u3, u4 ∈ V
forming a path P = (u1, u2, u3, u4) in G. Then, if {u1, u3},
{u2, u4} %∈ E the 1-Flipper operation F 1

P transforms graph
G to a graph F 1

P (G) = (V, E′) with

E′ := (E \ {{u1, u2}, {u3, u4}}) ∪ {{u1, u3}, {u2, u4}} .

Figure 1 illustrates the 1-Flipper operation. We denote
{u1, u2}, {u3, u4} ∈ E as flipping edges and {u2, u3} ∈ E as
hub edge of the 1-Flipper operation. A randomized version
of the 1-Flipper is given by the following algorithm.

Algorithm 1 Random 1-Flipper

Choose random edge {u2, u3} ∈ E
Choose random node u1 ∈ N(u2)\{u3}
Choose random node u4 ∈ N(u3)\{u2}
if {u1, u3}, {u2, u4} /∈ E then

E ← E \ {{u1, u2}, {u3, u4}}
E ← E ∪ {{u1, u3}, {u2, u4}}

We will now analyze this graph transformation. The fol-
lowing lemma shows that the 1-Flipper operation is sound.

Lemma 1 The 1-Flipper operation preserves connectivity
and d-regularity.

Proof. Concerning d-regularity note that each node re-
ceives one new edge and looses one of its former edges.

For connectivity consider two nodes u, v and a path P
connecting them. This path can be destroyed, if an edge
of P is chosen as flipping edge. However all participating
nodes of the 1-Flipper operation remain connected so that
another path between u and v can be found.

A delimiting factor for applying the 1-Flipper operation is
the existence of a triangle such that for a hub edge {u2, u3}
nodes v with {u2, v}, {u3, v} ∈ E exist. Then neither {u2, v}
nor {u3, v} can be chosen as flipping edges. Let (G(u, v) be

the number of triangles in G with {u, v} as an edge. Then
the following lemma holds:

Lemma 2 For a hub edge e ∈ E there are (d− 1−(G(e))2

possibilities to perform a 1-Flipper operation that changes
the edge set E.

Proof. Assume for a hub edge e = {u, v} that edges
{v, w}, {u, w} exist in G, then choosing one of these triangle
edges as flipping edges will prevent a change of the edge set.
If the flipping edges are not part of such triangles then the
1-Flipper operation will change the edge set.

Note that in some graphs for certain hub edges there is
no possibility to perform an edge flip at all. In this case
all neighbors are connected to both nodes of the hub edge.
Then, the 1-Flipper operation has no effect unless another

hub edge is chosen. Let G
F1
−→ G′ denote the predicate that

graph G is transformed to G′ by a 1-Flipper operation. For
the transformation probability between graphs the following
lemma holds:

Lemma 3

1. For all d > 2 there is a connected d-regular graph G

such that P[G
F1
−→ G] %= 0 .

2. For graphs G′ = F 1
P (G) with P = (u1, u2, u3, u4):

(G({u2, u3}) = (G′({u2, u3}).
3. For graphs G′ = F 1

P (G) with P = (u1, u2, u3, u4):
(G({u1, u4}) = (G′({u1, u4}).

4. For all undirected regular graphs G, G′:

P[G
F1
−→ G′] = P[G′

F1
−→ G] .

Proof.

1. Consider a graph with edges {u1, u2}, {u1, ui}, {u2, ui}
for i ∈ {3, . . . , d + 2} and an arbitrary set of further
edges satisfying the d-regularity. If edge e = {u1, u2}
is chosen as hub edge then (G(e) = d − 1 and from
Lemma 2 it follows that there is no possibility to per-
form a 1-Flipper operation that changes E.

2. This property follows by the definition of the 1-Flipper
operation. Note that it is not possible to establish
or delete triangles containing the hub edge by defi-
nition. Of course other triangles can be created or
erased. However they do not count for (G′({u2, u3}).

3. The proof is analogous to the proof of Lemma 3.2.

4. Note that G and G′ differ by exactly four edges con-
necting four nodes. At least two of these nodes are
connected by a hub edge. If exactly two of these nodes
are connected by a hub edge e then the probability to
transform G to G′ is according to Lemma 2 given by
2

dn (1−#G(e)2

(d−1)2
). From Lemma 3.2 the same probability

follows for the opposite direction G′
F1
−→ G.

If there are hub edges e and e′ forming a quadrangle to-
gether with the flipping edges the probability to trans-

form G to G′ is 2
dn (2 − #G(e)2+#G(e′)2

(d−1)2
). Then, the

claim follows by applying Lemma 3.2 and Lemma 3.3.
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Figure 2: Extending a cycle in G by an 1-Flipper
operation with {u, v} as hub edge. Nodes of the cycle
are depicted black.

We will now prove that the 1-Flipper operation provides
generality.

Lemma 4 For all pairs G, G′ of connected d-regular undi-
rected graphs, with d ≥ 2 and even, there exists a sequence
of 1-Flipper operations transforming G into G′.

Proof. We will show that any connected d-regular graph
G = (V, E) with V = {u1, . . . , un} can be transformed into
a canonical graph GC = (V, EC) with edge set defined to be
EC = {{ui, u(i mod n)+1}, . . . , {ui, u((i+d/2) mod n)+1}} for
1 ≤ i ≤ n. From this and the symmetry of the 1-Flipper the
lemma follows.

To transform G into GC we start with making G hamil-
tonian. Note that every connected graph contains a node
disjoint cycle, not necessarily containing all n nodes. We
extend this cycle to contain all nodes, thus make G hamil-
tonian. For this we successively add neighbored nodes to
the cycle: Let v denote a node of the cycle and let u be a
non-cycle node neighbored to v. To add u to the cycle we
perform a 1-Flipper operation with {u, v} as hub edge. The
flipping edges are one of v’s edges on the cycle and an ar-
bitrary edge incident to u different from {u, v}. This way u
is connected to two neighbored nodes on the cycle and thus
the cycle can be extended using u (see Figure 2).

It remains to show that no triangles prevent us from ap-
plying these 1-Flipper operations. If there exists an edge
between u and the end node of the flipping edge lying on
the cycle, then u can be incorporated into the cycle without
a 1-Flipper operation. For the second flipping edge between
u and one of its neighbors we show that u has at least one
neighbor which is non-adjacent to v using the d-regularity of
G. Node v has already three neighbors: u and two nodes on
the cycle. Without v, u has d − 1 neighbors which are dif-
ferent from v’s neighbors on the cycle (otherwise we do not
have to apply the 1-Flipper operation). Furthermore, these
d− 1 nodes cannot all be adjacent to v since this would im-
ply degree d+2 for v. So there exist flipping edges such that
the 1-Flipper operation described above can always be per-
formed. After at most n− 3 applications G is hamiltonian.

Having built the Hamilton cycle we bring the nodes of the
cycle into the right ordering such that the cycle represents
the edges {ui, u(i mod n)+1} of GC . Note that applying a
1-Flipper to a path (u1, u2, u3, u4) interchanges the two in-
ner nodes and results in the path (u1, u3, u2, u4). If we want
to exchange two neighbored nodes u, v on the cycle then we
can choose {u, v} as hub edge and choose the other cycle
edges of u respectively v as flipping edges. This way we can
arrange any ordering of the nodes on the cycle.

Again we have to show that no triangles prevent these
1-Flipper operations. Therefor consider a 1-Flipper opera-
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Figure 3: Transfoming G into GC : The endpoint ur

of edge {u1, ur} is moved in direction of node us with
a 1-Flipper operation.

tion applied to four neighbored nodes u1, u2, u3, u4 of the
cycle. This can be done unless edges {u1, u3} or {u2, u4}
exist. If both of these edges exist we simply redefine the
path of the cycle to get the desired ordering. Without re-
striction of generality we assume that {u2, u4} is the edge
preventing the 1-Flipper operation. In this case we can eas-
ily choose another flipping edge instead of {u3, u4}. We need
an edge incident to u3, not incident to u2 and not part of a
triangle over {u2, u3}. The existence of such an edge can be
shown using the d-regularity of G as we did above. So, we
can always find flipping edges to perform the desired graph
transformations.

Having established the edges {ui, u(i mod n)+1} we change
the remaining edges incrementally according to GC . To do
this, we restrict ourselves to 1-Flipper operations, where the
the hub edge is an edge of the cycle and the flipping edges
are non-cycle edges. This way the Hamilton cycle remains
unchanged. Furthermore we do not use edges which we have
already moved according to GC as flipping edges, i.e. we
do not destroy parts of the graph which we already have
adjusted.

We start at node u1 and establish edges {u1, u3}, . . . ,
{u1, ud/2+1} in this order. Then we do the same for nodes
u2, . . . , un. Here we only show how this can be done for
node u1. For the remaining nodes this can be done in the
same manner. From the outgoing (non-cycle) edges of u1

we choose the one whose endpoint is reached first when fol-
lowing the Hamilton cycle in direction of increasing node
numbers starting from u1. Let ur denote the current and
us, s < r, be the desired endpoint of this edge. We move
the endpoint of the edge in decreasing direction of the cycle
successively until us is reached. The first step is done by ap-
plying a 1-Flipper operation to the path (u1, ur, ur−1, ut),
with {ur−1, ut} being a non-cycle and not already adjusted
edge. This transformation is illustrated in Figure 3. The
remaining steps towards us are done using similar 1-Flipper
operations.

Once again these 1-Flipper operations can be blocked by
triangles. Note that the first flipping edge {u1, ur} cannot be
part of a triangle over {ur, ur−1} since {u1, ur−1} does not
exist in G, otherwise it would have been chosen as flipping
edge. However node ur−1 can have no free flipping edge
over the hub edge {ur, ur−1}. This can only happen if the
edge {ur−1, ur+1} exists or there is an already adjusted edge
pointing to ur−1, since ur−1 cannot be neighbored to u1.
Furthermore the neighbored cycle edges can also be blocked
by triangles. However there will be a non-blocked hub edge
in distance (d− 2)/2, as the following lemma shows.



Lemma 5 In any hamiltonian d-regular graph G with d > 2
at most d− 3 contiguous edges of the Hamilton cycle can be
completely blocked by triangles such that no 1-Flipper using
one of these d− 3 edges as hub edge and edges lying not on
the Hamilton cycle as flipping edges can be applied.

Proof. Let {ui, u(i mod n)+1}, 1 ≤ i ≤ n, be the edges
forming the Hamilton cycle. Without restriction of gener-
ality we regard the nodes u1, . . . , ud−2 neighbored on the
Hamilton cycle. To block edge {u1, u2} u1 and u2 have
to have d− 2 common neighbors neglecting their neighbors
on the Hamilton cycle. The same argumentation holds for
edge {u2, u3}, so that u3 has also to be connected to these
d − 2 nodes. Continuing to edge {ud−3, ud−2} this implies
that these d − 2 neighbors have reached degree d and thus
can not have any more neighbors. This implies that edge
{ud−2, ud−1} can be used as hub edge since there cannot be
d− 2 triangles over {ud−2, ud−1}.

Having such a non-blocked hub edge in distance at most
(d−2)/2, we can use it to remove a triangle blocking the orig-
inal considered hub edge as follows. Assume that there are
d − 2 neighbored cycle edges {uk, uk+1}, {uk+1, uk+2}, . . . ,
{uk+(d−3), uk+(d−2)} blocked by triangles. From Lemma 5
we know that {uk−1, uk} has two free flipping edges. Apply-
ing a 1-Flipper with hub edge {uk−1, uk} and a triangle edge
of uk and an arbitrary free edge of uk−1 as flipping edges
will remove one of the triangles over {uk−1, uk}, thus make
{uk−1, uk} non-blocked. This procedure can be repeated
until the desired hub edge is non-blocked.

The way described above we can make any desired hub
edge non-blocked and thus apply the desired 1-Flipper op-
erations. The situation is slightly different when we already
have adjusted the edges of n − (d − 1) nodes. Then there
are d − 2 hub edges left which we will use (this is due to
our construction scheme). According to Lemma 5 alone it is
possible that these d− 2 edges are blocked. However in our
particular case this cannot happen since the endpoints of the
blocking triangles would have to lie in parts of G which we
have already processed, and this is not possible by definition
of GC . (Lemma 4)

Let G
i→ G′ denote the predicate that G′ is derived from

G by applying i Random 1-Flipper operations. Furthermore
let Cn,d denote the set of all connected d-regular graphs with
n nodes. The following theorem shows that the Random
1-Flipper operation provides uniform generality.

Theorem 1 Let G0 be a d-regular connected graph with n
nodes and d > 2. Then in the limit the Random 1-Flipper
operation constructs all connected d-regular labeled graphs
with the same probability, i.e.

lim
t→∞

P [G0
t→ G] =

1
|Cn,d|

.

Proof. Consider a Markov process over the set of all con-
nected d-regular graphs described by the Random 1-Flipper.
From Lemma 3.1 we know that some diagonal entries of the
Markov transition matrix are non-zero. From Lemma 3.4
we know that the process is symmetric and therefore double
stochastic. Lemma 4 shows that every state of the Markov
process can be reached. From this the claim follows by ap-
plying essential results of Markov theory.

We now give a definition for expander graphs. Expander
graphs have a number of advantageous properties, e.g. loga-
rithmic diameter, high vertex connectivity and a small mix-
ing time of random walks.

Definition 3

1. For S, T ⊂ V denote the set of all edges between S and
T by E(S, T ) = {{u, v}|u ∈ S, v ∈ T, {u, v} ∈ E}.

2. The edge boundary of a set S ⊂ V , denoted by ∂S, is
∂S = E(S, S̄) with S̄ = V \ S.

3. A graph G = (V, E) provides expansion β > 0, or is a
β-expander, if for all node sets S with |S| ≤ |V |/2

|∂S| ≥ β|S| .

Theorem 2 For d ∈ ω(1) a random connected d-regular
graph is a Θ(d)-expander graph a.a.s..

Proof. Note that for fixed d ≥ 3 any random d-regular
graph is connected a.a.s.. This follows by independent proofs
of [2] and [20] who even prove d-connectivity. Furthermore
in [3] it is proved that the isoperimetric number (which is
the expansion) of a random regular graph is a.a.s. between
1
2d− ε(d) and 1

2d + ε(d) where ε(d)→ 0 as d→∞.
Since, nearly all random regular graphs are connected and

nearly all of them have an expansion of Θ(d) it follows that
nearly all random regular connected graphs have an expan-
sion of Θ(d).

Corollary 1 For d > 2 consider any d-regular connected
graph G0 with n nodes. Then in the limit the Random
1-Flipper operation establishes an expander graph after a suf-
ficiently large number of applications a.a.s..

As we have seen in this section the Random 1-Flipper con-
structs expander graphs in the limit. It is an open problem
how many 1-Flipper operations are necessary. We conjec-
ture that a polynomial number of operations is sufficient to
establish expander graphs with high probability. There is
some experimental evidence in favor to this thesis.

4. FAST CONSTRUCTION OF
EXPANDER GRAPHS

In this section we present a generalization of the 1-Flipper
operation for which we can show a polynomial bound on the
convergence speed towards an expander graph. For this we
extend the hub edge of the 1-Flipper to a path of k edges
leading to following definition.

Definition 4 (k-Flipper) Consider a d-regular undirected
graph G = (V, E) and k + 3, k ∈ N, nodes u1, . . . , uk+3 ∈ V
forming a path P = (u1, . . . , uk+3) in G. We call {u1, u2},
{uk+2, uk+3} ∈ E flipping edges and the path (u2, . . . , uk+2)
in G the hub path. If the edges {u1, uk+2} and {u2, uk+3} do
not exist in E then the k-Flipper operation F k

P transforms
G to F k

P (G) = (V, E′) with

E′ := (E \ {{u1, u2}, {uk+2, uk+3}})
∪ {{u1, uk+2}, {u2, uk+3}} .
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Figure 4: A k-Flipper can disconnect a graph.

u
l

u
r+1

u
l+1

u
r

u
l

u
r+1

u
l+1

u
r

Figure 5: The k-Flipper with truncated hub path.

Unlike as the 1-Flipper, the k-Flipper can disconnect a
graph. Figure 4 shows a k-Flipper operation which uses the
flipping edge {u1, u2} twice such that the resulting graph
is partitioned into disconnected components. In order to
preserve connectivity we have to ensure that there is a hub
path between nodes u2 and uk+2 of a k-Flipper operation
without using the flipping edges. On the other hand we do
not want to bias the random walk by forbidding to use the
first edge or the a priori unknown last edge.

Fortunately, this problem is easy to handle. A simple
solution is to truncate the path P = (u1, . . . , uk+3) to a
path P ′ = (u!, . . . , ur+1) with 1 ≤ % < r < k + 3 such
that {u!, u!+1} = {u1, u2}, {ur, ur+1} = {uk+2, uk+3} and
{u1, u2}, {uk+2, uk+3} do occur only once in P ′ (see Figure
5). This observation leads to the following algorithm.

Algorithm 2 Random k-Flipper

Choose random node u1 ∈ V
for i← 1 to k + 2 do

Choose random node ui+1 ∈ N(ui)
for i← k + 2 downto 2 do

if {ui, ui+1} = {uk+2, uk+3} then r ← i
for i← 1 to r do

if {ui, ui+1} = {u1, u2} then %← i
if r ≥ % + 2 and {u!, ur}, {u!+1, ur+1} /∈ E then

E ← E \ {{u!, u!+1}, {ur, ur+1}}
E ← E ∪ {{u!, ur}, {u!+1, ur+1}}

We continue with the analysis of the Random k-Flipper.

Lemma 6 The Random k-Flipper operation preserves con-
nectivity and d-regularity.

Proof. For d-regularity the same arguments as in Lemma
1 hold. Applying the edge flip to the truncated path P ′ =
(u!, . . . , ur+1) it is ensured that the graph will stay con-
nected since no edges of the hub path will be removed.

Similar to the 1-Flipper operation, the Random k-Flipper
operation provides generality.

Lemma 7 For all pairs G, G′ of connected d-regular undi-
rected graphs there exists a sequence of Random k-Flipper
operations transforming G into G′.

Proof. Note that a Random k-Flipper operation can be
reduced to a 1-Flipper operation if the path at the beginning
uses the start edge k−1 times. In Lemma 4 we have proved
that this property holds for the 1-Flipper.

The Random k-Flipper is not a symmetric graph transfor-
mation as the Random 1-Flipper. Therefore, it is not clear
if the Random k-Flipper provides uniform generality. Nev-
ertheless, it establishes an expander graph in a polynomial
number of rounds which we prove now. For this we start
with a bisection of the node set of a graph G = (V, E) into
S ⊂ V and S̄ = V \S with |S| ≤ |V |/2. Let |V | = n, |S| = m
and |E(S, S̄)| = q be the number of edges of the cut. We are
interested in the number q′ of edges between S and S̄ after
applying a Random k-Flipper operation. Now assume that
each edge is chosen with uniform probability 2

dn as a flipping
edge. This assumption is motivated by the fact that a long
random walk in the graph will choose flipping edges with
uniform probability. Then there are the following cases:

1. Both flipping edges are chosen from E(S, S). Then
the Random k-Flipper operation will not increase the
number of edges of the cut, i.e. q′ = q.

2. Both flipping edges are chosen form E(S̄, S̄). Again
q′ = q.

3. One flipping edge is in E(S, S) and one is in E(S̄, S̄).

This will occur with probability 2(dm−q)(dn−dm−q)
d2n2 and

two edges are added to the cut, i.e. q′ = q + 2.

4. One flipping edge is in E(S, S̄) and one is in E(S, S).
Then q′ = q.

5. One flipping edge is in E(S, S̄) and one is in E(S̄, S̄).
Then q′ = q.

6. Both flipping edges are in E(S, S̄). This happens with

probability
`

2q
dn

´2
. In this case the number of edges

on the cut can be decreased by two or stay the same,
i.e. q′ ∈ {q− 2, q}. However, it is guaranteed from the
connectivity property that q′ ≥ 1.

This proves the following lemma.

Lemma 8 Consider a bisection of a graph G = (V, E) into
S ⊂ V, S̄ = V \ S, |S| ≤ |V |/2 and let |V | = n, |S| = m and
|E(S, S̄)| = q. If the flipping edges are chosen with uniform
probability then a Random k-Flipper operation transforms q
to q′ as follows:

P[q′ = q − 2] ≤
„

2q
dn

«2

P[q′ = q + 2] = 2
“m

n
− q

dn

”“
1− m

n
− q

dn

”



So, for a given partition the Random k-Flipper operations
describe a random drift towards a state that satisfies an
expansion. However, one cannot guarantee a truly uniform
choice of the flipping edges. Yet, if the random walk is long
enough an approximation can be provided.

Lemma 9 For k ∈ Θ(d2n2 log 1/ε) the Random k-Flipper
chooses the first flipping edge with uniform probability and
the second edge with probability (1 ± ε) 2

dn for any ε > 0.

Proof. Consider the conductance Φ of a d-regular graph
defined by

Φ := min
S⊂V,S '=∅

n|∂S|
d|S| · |S̄|

.

As a lower bound for the conductance of connected graphs
we have

Φ ≥ min
m∈{1,...,n−1}

n
dm(n−m)

=
4
dn

.

According to Lovász [13] the second eigenvalue λ2 of the
Markov process is bounded by

Φ2

8
≤ 1− λ2 ≤ Φ ,

which implies a bound of λ2 ≤ 1 − 2
d2n2 . Let P t(j) denote

the probability that a random walk ends at j after t rounds.
Then, this implies

˛̨
˛̨P t(j)− 1

n

˛̨
˛̨ ≤

„
1− Φ2

8

«t

≤
„

1− 2
d2n2

«t

.

So, after d2n2 log 1/ε rounds in all graphs this term is smaller
than ε. This proof follows the ideas presented in [13].

This implies the following Lemma.

Lemma 10 Consider a bisection of a graph G = (V, E)
into the sets S ⊂ V and S̄ = V \ S, |S| ≤ |V |/2, with
|V | = n, |S| = m and |E(S, S̄)| = q. Applying a Random
k-Flipper operation with k ∈ Θ(d2n2 log 1/ε) and ε ∈ (0, 1

8 ]
the number of edges of the cut is changed from q to q′ such
that

P[q′ = q − 2] ≤ 4(1 + ε)α2

P[q′ = q + 2] ≥ 2(1− ε)(β − α)(1− β − α)

with α = q
dn and β = m

n .

Proof. The proof follows by adapting the approximation
bound (1 ± ε) of Lemma 9 to Lemma 8.

Note that for α - β we observe a random walk with a
strong drift over the number of edges. The probability that
two edges are added is larger than the probability that two
edges are removed. So, we can reduce the analysis to a
random walk with a drift and use the following lemma.

Lemma 11 Consider a random walk on the set of numbers
{1, . . . , B} with transition probability 2p from i to i + 1 for
i < B and probability p from i to i − 1 for i > 1. The
probability to remain in state i is 1−3p for i ∈ {2, . . . , B−1},
1− 2p for state 1 and 1− p for state B.

For any c > 0 there exists c′ such that after c′B/p rounds
the probability that the random walk ends within the set
{1, . . . , B − t} is at most 2−cB + 2−t+1.

Proof. In the worst case the random walk starts at po-
sition 1. The expected distance the random walk upwards
within k rounds is pk. If we choose k = c′B/p we can apply
Chernoff bounds to prove that with probability 1−2−cB the
position B is reached at least once.

Now consider the stationary distribution, when the Markov
process has converged. Let Pt be the probability for state
B − t. For t > 1 we have the recursion

Pt = 2pPt+1 + (1− 3p)Pt + pPt−1.

This recursion is satisfied for Pt = γ2−t−1. Furthermore,
this implies: P0 = 2P1 = γ/2. Summing up over all po-
sitions and using PB−2 = 2PB−1 we have γ = 1

1−2−B−1

and the probability that the random walk is in the inter-
val {1, . . . , B − t} after reaching B is at most 2−t+1, which
implies the claim.

Now we are able to prove the fast convergence of the Ran-
dom k-Flipper.

Theorem 3 If we choose d ∈ Ω(log n) applying O(dn) Ran-
dom Θ(d2n2 log 1/ε)-Flipper operations transforms any given
d-regular connected graph into a connected d-regular graph
with expansion Θ(d).

Proof. We will prove an expansion of at least d/16. For
this we consider all sub-sets S ⊂ V, S %= ∅ with |S| = m ≤
n/2. Now we apply Lemma 10 with a constant choice for ε
for a bisection where the edge set is at most twice than the
expansion, i.e. q ≤ md/8. Then α = q

dn ≤
m
8n = 1

8β and
β ≤ 1

2 . This implies for ε = 1
8 :

2(1− ε)(β − α)(1− β − α) ≥ 2(1− ε)
7
8
β

„
1− 9

8
β

«

≥ 63
64

(1− ε)β ≥ 63
32

(1− ε)β2 ≥ 126(1− ε)α2 .

Again let q′ denote the number of edges of the cut after
applying one Random k-Flipper operation. Then, we have

P[q′ = q+2] ≥ 94P[q′ = q−2] and P[q′ = q+2] ≥ 1
2

m
n

.

So, for the number of boundary edges we observe a ran-
dom walk with a drift. The process that we have studied in
Lemma 11 gives an upper bound on the number of Random
k-Flipper operations for p = m

4n and B = md
4 (we spare a

factor of two since we walk two steps in a round). Hence,

with probability 1− (2−cB + 2−
1
2 B) the number of edges is

at least md
16 within this cut after c′B/p ≤ c′md

4
4n
m ≤ c′dn

rounds of Random k-Flipper operations.
Let c ≥ 1

2 . It remains to sum up all error probabilities

2−cB + 2−
1
2 B ≥ 2−

1
2 B + 2−

1
2 B ≥ 2 · 2−

md
4 of all sub-sets

S ⊂ V of size m ≤ n/2 for some d = k log n with k > 8.

2

n/2X

m=1

 
n
m

!
2−

1
4 km log n ≤ 2

n/2X

m=1

nm2−
1
4 km log n

≤ 2

n/2X

m=1

2(1− 1
4 k)m log n ≤ 2

n/2X

m=1

n(1− 1
4 k)m

≤ 2
n
2

n1− 1
4 k ≤ n−k′



Possible Improvements
As noted above the Random k-Flipper is not symmetric, i.e.
the transition probability from graph G to G′ may differ
from the transition probability from G′ to G. Therefore,
it is an open problem if the Random k-Flipper with k > 1
provides uniform generality. Nevertheless, slightly modified
versions provide symmetry. For this, the random walk needs
to avoid to traverse the flipping edges more than once. The
Random k-Flipper is allowed to traverse these edges and a
sub-path of the random walk will be chosen. This choice
causes the break of symmetry. If we avoid visiting nodes
more than once we have the Node Disjoint Random k-Flipper
and if we avoid visiting edges more than once we get the Edge
Disjoint Random k-Flipper. Both operations have symmet-
ric transition probabilities. However, when using these op-
erations long random walks are not possible, especially not
paths of length Θ(d2n2 log 1/ε). Furthermore, the proof of
Theorem 3 cannot be applied since the random walk used
in these modified versions is rather biased. So, the practical
use of these symmetric versions is doubtable.

As soon as the expansion property is established one can
reduce the length of the random walk of the Random k-
Flipper to a polylogarithmic term. Furthermore, it maybe
that such a random walk suffices for the whole procedure.

5. PEER-TO-PEER NETWORKS BASED
ON RANDOM REGULAR GRAPHS

The operations introduced in the previous sections are
particularly suitable for building and maintaining large dis-
tributed random networks. Such random networks are the
backbone of the JXTA peer-to-peer networking suite for ex-
ample.

Note that there is a similar approach by Law and Siu
[11] with the same goal, yet based on a completely different
construction. In a nutshell they build a d-regular random
multigraph in which the set of edges is composed of d/2
Hamilton cycles of size n. However the probability space
produced by their protocol may deviate far from the uni-
formly distributed space and may lead to graphs with small
or no expansion and their operation cannot recover from bad
graphs. The Random k-Flipper operations overcome these
problems.

From now on we will talk of peers and networks instead of
nodes and graphs and discuss the networking aspects like dy-
namics (joining and leaving peers) and problems arising with
the concurrent use of Random k-Flipper operations in a dis-
tributed network. In this section we show how to maintain
dynamic connected d-regular peer-to-peer networks based
on random graphs with expansion property.

For this the Random k-Flipper operations are started dis-
tributedly by every peer from time to time and control mes-
sages are sent over random paths and neighbors are ex-
changed. This way continuously fresh randomness is added
to the network and by the parallel operations the network
quickly converges to an expander graph. Furthermore the
network connections are validated automatically by the ran-
dom walks of the k-Flipper operations.

Unlike as in the graph approach, in distributed dynamic
networks it is difficult to guarantee the d-regularity, e.g. if
only one edge is missing, then there are only two nodes with
degree d − 1 while the other nodes have degree d. Finding
the partner would involve a search (or a data structure)

for the whole network. Yet the benefit of having exactly d
neighbors is rather small if d is at least logarithmic, what
is characteristic for peer-to-peer networks. Therefore, we
allow nodes to have either d or d−1 neighbors and call such
networks {d, d− 1}-regular.

5.1 Joining Peers
The easiest way for a peer to get a valid neighborhood

without violating the {d, d− 1}-regularity of the network is
to randomly choose d/2 connections defined by d distinct
nodes, erase these connections and connect to each of the d
nodes: “The peer places itself in the middle of these connec-
tions”. The distinctness of the d peers of these connections
is crucial, since otherwise the new peer would either create
multiple connections to some peers or reduce the degree of
some peers violating the {d, d − 1}-regularity. So, we have
to find enough random connections in reasonable time.

We assume a peer u willing to join the network knows
at least one peer v within the network. Starting from v, u
sends a control message on a random walk. At each node
visited u selects a random neighbor v′ of v and creates a
lock on the connection {v, v′} preventing other nodes from
selecting this edge. Furthermore these locks prevent Flip-
per operations from choosing these edges as flipping edges.
According to [1] the length of the random walk can be cho-
sen as O(d2 log d). In the expectation this number of hops
is sufficient to detect d distinct nodes in any graph by a
random walk. If after O(d2 log d) hops not enough random
connections could be found the random walk is canceled.
This process can fail if either the network is too small or
if the network structure is bad (which is unlikely, yet pos-
sible). A new peer which could not find enough neighbors
can retry finding new neighbors by the same procedure after
some time. If the control message has successfully finished
the random walk reporting enough neighbors, u is contacted
by enough peers of the network and can places itself in the
middle of each of the collected connections.

5.2 Leaving Peers
The case of leaving peers can be divided in peers leav-

ing intentionally and peers leaving by some kind of local or
network failure. We will consider the case of nodes leaving
intentionally first.

It turns out that this case is easy to handle. A leaving
peer u successively selects two random peers v and v′ of his
neighborhood. Then v and v′ are informed that u is about
to leave. The peers v and v′ then connect to each other and
remove u from their neighborhood. Next, u removes v and
v′ from its neighborhood and continues with the next pair of
neighbors until all neighbors are processed. This procedure
ensures that the network still has degree d or d−1 (provided
that the network consists of enough peers).

The case of peers failing unexpectedly is more problem-
atic. First of all, failing peers bear the problem of discon-
necting the network. Classical failure analysis in peer-to-
peer networks is focused on analyzing the probability that
a given peer becomes disconnected [19, 12]. So that we will
restrict to this case, too.

Fact 1 Let G be a random d-regular network of size n with
d ∈ Ω(log n). When each peer fails with probability 1/2, then
a single peer will stay connected to the rest of the network
with high probability.



Proof. To seperate a peer from the network all of his
d ∈ Ω(log n) neighbors have to fail. This will happen with
probability 2−d ≤ 2−c log n = n−c.

Another issue is that a failing peer reduces its neighbors
degree by one. As noted above we do not want to fix this
degree by choosing pairs since this causes too much commu-
nication overhead. Our solution is that a neighbor detects
an edge failure while sending control information for the pe-
riodically occurring Random k-Flipper operations. If the
degree is smaller than d− 1 then a peer uses the node join-
ing algorithm to increase its degree by the missing number
of edges, i.e. it chooses random connections of the network
and places itself in the middle of these connections, thus in-
creasing its own degree by two without changing the degree
of other peers.

5.3 Concurrency
When multiple Random k-Flipper operations are applied

to a graph concurrently (which is likely when the graph rep-
resents a huge network) some additional effort is necessary
to guarantee connectivity. In case of the Random 1-Flipper
operation there is only a small constant number of nodes in-
volved in intersecting operations. So, these can coordinate
their graph transformations in a way that no two intersect-
ing transformations take place at the same time.

However some additional effort is necessary to guarantee
connectivity in case of concurrent Random k-Flipper oper-
ations without central coordination mechanisms. We start
our analysis with the following fact.

Fact 2 The only way to divide a graph into components with
Random k-Flipper operations is to destroy the hub path of a
Random k-Flipper operation. Furthermore the only way to
remove edges with Random k-Flipper operations is to choose
these edges as flipping edges.

In the following we will consider two concurrent Random
k-Flipper operations U and V . Let u1, . . . , ui respectively
v1, . . . , vj denote their truncated random walks according to
the Random k-Flipper algorithm (see Algorithm 2).

Lemma 12 The hub path of a Random k-Flipper operation
U cannot be destroyed by another Random k-Flipper opera-
tion V if V does not use the flipping edges {u1, u2}, {ui−1, ui}
of U .

Proof. When V chooses one or both of its flipping edges
to lie on the path (u2, . . . , ui−1) this will only substitute the
edges to be deleted by V by a path. Thus the network will
stay connected.

Things get more complicated when U and V interfere each
other, i.e. U has an flipping edge on the path (v2, . . . , vj)
and V has a flipping edge on the path (u2, . . . , ui).

2 This
may lead to a disconnected graph as shown in Figure 6.

However the partition of the graph does not necessarily
take place since there may be other independent paths be-
tween u1 and u2. While the probability of the disconnecting
the graph is rather small, we aim at guaranteed connectiv-
ity. In our view this is important because on the long run
2Note that we can guarantee u1 %= v1 since no peer will
start another Random k-Flipper operation before the previ-
ous one is finished.
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Figure 6: Concurrent Random k-Flipper operations
can disconnect a graph. The graph at the top shows
random walks performed by two Random k-Flipper
operations U (dashed) and V (dotted), which result
in the disconnected graph shown beneath.

also small probability events will surely occur – regardless
of their small probability.

So, we use the following locking mechanism. Each Ran-
dom k-Flipper operation U leaves a stamp – a represen-
tation of its starting edge – at each edge it passes. In
addition U keeps track of the edges it has visited during
the random walk in a list L. When the random walk is
finished, it is checked whether one of the flipping edges
{u1, u2}, {ui−1, ui} has a stamp s ∈ L on it. In this case
another Random k-Flipper with starting edge on U ’s ran-
dom walk has already passed one of U ’s flipping edges and U
is risking connectivity if the edges are flipped. The solution
to this is rather simple. If the last edge {ui−1, ui} has crit-
ical stamps on it U can do another random step or choose
another edge of the last but one node and check again for
stamps in L. Critical stamps on the starting edge {u1, u2}
can be handled similar. If no suitable edges can be found
the Random k-Flipper operation is canceled. To prevent the
whole graph from getting locked, the stamps should be soft
state and be deleted after some constant time t. This im-
plies that also all Random k-Flipper operations have to be
finished in time t or they will have to be canceled. Given
this stamp mechanism the following lemma holds.

Lemma 13 Using random walks with stamps as described
above, no two concurrent Random k-Flipper operations can
interfere with each other.

Proof. Again consider two Random k-Flipper operations
U and V . For the proof we will regard the path (u1, . . . , ui)
of U as fixed. Furthermore V has one flipping edge on the
path (u1, . . . , ui) and thus interferes U . We assume this to
be the starting edge {v1, v2} of V . Note that we can restrict
to this case because of symmetry. In order to make U and V



interfere with each other, V has to pass at least one flipping
edge of U . When V passes one of these edges it will leave
a stamp on it. This will make U to find a stamp represent-
ing an edge of the path (u1, . . . , ui) on it when checking the
flipping edges {u1, u2}, {ui−1, ui}. Thus U will not perform
the Random k-Flipper operation.

Combining our results the following theorem holds.

Theorem 4 Using random walks with stamps the network
is guaranteed to stay connected while applying concurrent
Random k-Flipper operations.

Proof. This theorem follows directly from the combina-
tion of Lemma 12 and Lemma 13.

For peer-to-peer networks it turns out that the Random
1-Flipper is easier to handle than the Random k-Flipper
with larger k. Especially if k ∈ Θ(d2n2 log 1/ε) is chosen
as in Theorem 3 then the whole network is swamped with
stamps of one type. Parallel Random k-Flipper operations
may block each other or in the best case are performed se-
quentially. For the networking point a small choice for k is
highly desirable. However, little is known about the con-
vergence rate except for the case of expander graphs. In an
expander graph k ∈ O(log n) can be used. There is hope
that the parallel use of Random 1-Flipper converges as fast
as the sequential use of Random k-Flipper operations since
the Random 1-Flipper causes a pointer-jumping effect that
boosts the performance. Experimental simulations support
this theory.
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