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Stefan Rührup1 and Christian Schindelhauer2

1 Heinz Nixdorf Institute, University of Paderborn, Germany
sr@uni-paderborn.de

2 Computer Networks and Telematics, University of Freiburg, Germany
schindel@informatik.uni-freiburg.de

Abstract. We consider the problem of route discovery in a mesh net-
work with faulty nodes. The number and the positions of the faulty nodes
are unknown. It is known that a flooding strategy like expanding ring
search can route a message linear in the minimum number of steps d while
it causes a traffic (i.e. the total number of messages) of O(d2). For opti-
mizing traffic a single-path strategy is optimal producing traffic O(d+p),
where p is the number of nodes that are adjacent to faulty nodes. We
present a deterministic multi-path online routing algorithm that delivers
a message within O(d) time steps causing traffic O(d + p log2 d). This
algorithm is asymptotically as fast as flooding and nearly traffic-optimal
up to a polylogarithmic factor.

1 Introduction and Overview

Sending a message is the most fundamental feature of communication networks.
We consider two-dimensional mesh networks, which can be found in parallel
computers, in integrated circuits, FPGAs (Field Programmable Gate Arrays)
and also some kinds of wireless sensor networks. In all these networks nodes
may fail or may be unavailable. A node’s failure can only be noticed by its
neighbors. A straight-forward approach is to regularly test the neighbors of each
node, to collect this data and to distribute a map of all failed and working nodes
throughout the network. We investigate scenarios where this knowledge is not
available when the message is on its way. Due to the lack of global information
this routing problem states an online problem.

The basic problem is that the faulty nodes are barriers to the routing algo-
rithm and that the algorithm does not know these barriers. There is no restriction
on the size and the shape of the barriers, so even labyrinths are possible. In such
situation a fast message delivery can only be guaranteed by flooding the com-
plete network, which results in a tremendous increase of traffic, i.e. the number
of node-to-node transmissions. If the algorithm uses a single-path strategy, then
the additional effort necessary for searching a path to the destination increases
the time.
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We analyze algorithms with respect to the length of the shortest path d
between source and target and with respect to the number of border nodes p,
which are the nodes adjacent to faulty nodes. Regarding the time, no single-
path online algorithm can beat the optimal offline algorithm and in worst case
scenarios it has to investigate all the barriers, i.e. a traffic proportional to the
number of border nodes p is inevitable. There are single-path algorithms that use
only O(d+p) messages in total, but they need O(d+p) time steps. Time-optimal
algorithms are parallel multi-path algorithms (e.g. expanding ring search) with
time O(d) and traffic O(d2) in the worst case.

We are interested in optimizing time and traffic at the same time. One might
expect a trade-off situation between these measures. However, our research shows
that there are algorithms that approximate the offline time bound and the opti-
mal online traffic bound by a factor of O(

√
d) [21] at the same time. The quotient

comparing to the offline time bound is called the competitive time ratio, while
the quotient comparing to the traffic bound of the optimal online algorithm is
called the comparative traffic ratio. Subsequent work showed that both bounds

could be improved below any polynomial bound to a term of d
O

“q
log log d

log d

”
[22].

We call a bound on both ratios the combined comparative ratio Rc (Def. 5).

Strategy Time Traffic Rc

Exp. Ring Search [9, 18] O(d) O(d2) O(d)
Lucas’ Algorithm [13] O(d + p) O(d + p) O(d)
Alternating Strategy [21] O(d3/2) O(min{d2, d3/2 + p}) O(

√
d)

Selective Flooding [22] d · 2O
“q

log d
log log d

”
O(d)+p d

O
“q

log log d
log d

”
d
O

“q
log log d

log d

”
JITE (this paper) O(d) O((d + p) log2 d) O(log2 d)
Online Lower Bound (cf. [3]) Ω(d) Ω(d + p) Ω(1)

In this paper we achieve a break-through in this line of research showing a
ratio of O(log2 d). More specifically we present a deterministic algorithm that
delivers the message on a multi-path route within time O(d) and with traffic
O(d+ p log2 d). This shows, that one can route a message asymptotically as fast
as flooding while increasing the traffic by a factor of only O(log2 d) compared to
the traffic-optimal online algorithm.

This paper is organized as follows. We continue this section by presenting
related research. In the following section we describe the basic definitions and
techniques more formally. In Section 3, we present the algorithm starting with
an overview and the description of its components. In Section 4, we sketch the
time and traffic analysis which concludes the paper.

1.1 Related Work

The problem studied in this paper has a strong relation to online search and nav-
igation problems. These problems have been investigated in different research
communities, which Angluin et al. [1] called “the online competitive analysis
community” and the “theoretical robotics community”. The fundamental goal



in online searching is to find a point in an unknown environment. In theoretical
robotics the scenarios contain obstacles of arbitrary shape and the performance
of algorithms is expressed by comparing the distance traveled by the robot to
the sum of the perimeters of the obstacles [15, 1] (see also [2] for a survey and
[14, 19] for an overview of path-planning and maze traversal algorithms). The
competitive analysis community has studied various kinds of scenarios with re-
strictions on the obstacles (e.g. quadratic or convex obstacles). The performance
is expressed by the competitive ratio, which is the ratio of the distance traveled
by the robot and the length of the shortest obstacle-free path [17, 3].

Our model connects these two lines of research. Scenarios considered in online
navigation with a lower bound on distance between s and t and with finite obsta-
cle perimeters can be modeled by a faulty mesh network. We also investigate the
problem of finding a path to a given point in an unknown environment, but here,
the search can also be done in parallel. For robot navigation problems it is not
clear how unbounded parallelism can be modeled in a reasonable way. Usually,
navigation strategies are only considered for a constant number of robots. The
model of a mesh network with faulty parts enables us to study the impact of
parallelism on the time needed for finding the target. For the time analysis we
use the competitive ratio as used by the competitive analysis community. Traffic
is compared to the perimeters of the barriers which gives the comparative traffic
ratio. This ratio expresses the amount of parallelism used by the algorithm.

Routing in faulty networks has also been considered as an offline problem. In
the field of parallel computing the fault-tolerance of networks is studied, e.g. by
Cole et al. [8]. The problem is to construct a routing scheme that emulates the
original network. Zakrevski and Karpovski [26] investigate the routing problem
for two-dimensional meshes. The model is similar to ours as they consider two-
dimensional meshes under the store-and-forward model. Their algorithm needs
an offline pre-routing stage, in which fault-free rectangular clusters are identified.
Routing algorithms for two-dimensional meshes, that need no pre-routing stage
are presented by Wu [24]. These algorithms use only local information, but the
faulty regions in the mesh are assumed to be be rectangular blocks. In [25]
Wu and Jiang present a distributed algorithm that constructs convex polygons
from arbitrary fault regions by excluding nodes from the routing process. This
is advantageous in the wormhole routing model, because it helps to reduce the
number of virtual channels. We will not deal with virtual channels and deadlock-
freedom as we consider the store-and-forward model.

Bose and Morin [6, 5] study the online routing problem for triangulations
and plane graphs with certain properties and present constant-competitive al-
gorithms for routing in these graphs. In triangulations, where no local minima
exist, routing can be done by a greedy strategy. Such strategies are also used
for position-based routing. Position-based routing is a reactive routing used in
wireless networks, where the nodes are equipped with a positioning system, such
that a message can be forwarded in the direction of the target (see [16] for a
survey). Due to the limited range of the radio transceivers, there are local min-
ima and messages have to be routed around void regions (an analog to the fault



regions in the mesh network). There are various single-path strategies, e.g. [11, 7,
12]. Position-based routing strategies have been mainly analyzed in a worst case
setting, i.e. the void regions have been constructed such that the connections
form a labyrinth. In this case the traffic-efficient single-path strategies produce
as much traffic as flooding. In our analysis we take the perimeters of fault regions
into account, so that we can express performance beyond the worst case point
of view.

2 Basic Definitions and Techniques

A two-dimensional mesh network with faulty nodes is defined by a set of nodes
V ⊆ N×N and a set of edges E := {(v, w) : v, w ∈ V ∧|vx−wx|+ |vy−wy| = 1}.
There is no restriction on the size of the network, because time and traffic are
analyzed with respect to the position of the given start node s and target node
t. We assume a synchronized communication: Each message transmission to a
neighboring node takes one time step. Furthermore, we assume the messages
to be transported in a store-and-forward fashion and that the nodes do not
fail while a message is being transported. However, there is no global knowledge
about faulty nodes. Only adjacent nodes can determine whether a node is faulty.

barrier

perimeter

s

t

Fig. 1. Mesh network with faulty
nodes (black), routing path and
right-hand traversal path

Barriers, Borders and Traversals The
network contains active (functioning) and
faulty nodes. Faulty nodes neither participate
in communication nor can they store infor-
mation. Faulty nodes which are orthogonally
or diagonally neighboring form a barrier. A
barrier consists only of faulty nodes and is not
connected to or overlapping with other bar-
riers. Active nodes adjacent to faulty nodes
are called border nodes. All the nodes in the
neighborhood (orthogonally or diagonally) of
a barrier B form the perimeter of B. A path
around a barrier in (counter-)clockwise or-
der is called a right-hand (left-hand) traversal
path, if every border node is visited and only nodes in the perimeter of B are
used. The perimeter size p(B) of a barrier B is the number of directed edges of
the traversal path. The total perimeter size is p :=

∑
i∈N p(Bi). The perimeter

size is the number of steps required to send a message from a border node around
the barrier and back to the origin, whereby each border node of the barrier is
visited. It reflects the time consumption of finding a detour around the barrier.

The Competitive Time Ratio Time is the number of steps needed by the
algorithm to deliver a message and equivalent to the length of a path a message
takes. Comparing the time of the algorithm with the optimal time leads to the
competitive ratio, which is well known in the field of online algorithms [4].



Definition 1. An algorithm A has a competitive ratio of c, if ∀x ∈ I : CA(x) ≤
c · Copt(x), where I is the set of all instances of the problem, CA(x) the cost of
algorithm A on input x and Copt(x) the cost of an optimal offline algorithm.

We compare the time of the algorithm with the length d of the shortest path to
the target. Note, that the shortest path uses only non-faulty nodes.

Definition 2. Let d be the length of the shortest barrier-free path between source
and target. A routing algorithm has competitive time ratio Rt := T/d if the
message delivery is performed in T steps.

The Comparative Traffic Ratio Traffic is the number of messages an algo-
rithm needs. A comparison with the traffic of the best offline algorithm would
be unfair, because no online algorithm can reach this bound. Therefore, we de-
fine a comparative ratio based on a class of instances of the problem, which is a
modification of the definition given by Koutsoupias and Papadimitriou [10]:

Definition 3. An algorithm A has a comparative ratio f(P ), if
∀p1 . . . pn ∈ P : max

x∈IP

CA(x) ≤ f(P ) · min
B∈B

max
x∈IP

CB(x),

where IP is the set of instances which can be described by the parameter set P ,
CA(x) the cost of algorithm A and CB(x) the cost of an algorithm B from the
class of online algorithms B.

With this definition we address the difficulty that is caused by a certain class
of scenarios that can be described in terms of the two parameters d and p.
For any such instance the online traffic bound is minB∈B maxx∈I{d,p} CB(x) =
Θ(d + p). Note, that for any scenario one can find an optimal offline algorithm:
maxx∈I{d,p} minB∈B CB(x) = d. This requires the modification of the compara-
tive ratio in [10] in order to obtain a fair measure. So, we use the online lower
bound for traffic to define the comparative traffic ratio.

Definition 4. Let d be the length of the shortest barrier-free path between source
and target and p the total perimeter size. A routing algorithm has comparative
traffic ratio RTr := M/(d + p) if the algorithm needs altogether M messages.

The combined comparative ratio addresses time efficiency and traffic efficiency:

Definition 5. The combined comparative ratio is the maximum of the compet-
itive time ratio and the comparative traffic ratio: Rc := max{Rt,RTr}

Basic Strategies
Lucas’ algorithm [13] is a simple single-path strategy that works as follows: (1.)
Follow the straight line connecting source and target node. (2.) If a barrier is in
the way, then traverse the barrier, remember all points where the straight line is
crossed, and resume step 1 at that crossing point that is nearest to the target.
This algorithm needs at most d + 3

2p steps, where d is the length of the shortest
barrier-free path and p the total perimeter size. This is an optimal single-path
strategy [14], which matches the asymtotical lower bound for traffic.



Expanding ring search is a straightforward multi-path strategy [9, 18], which
is nothing more than to start flooding with a restricted search depth and re-
peat flooding while doubling the search depth until the destination is reached.
This strategy is asymptotically time-optimal, but it causes a traffic of O(d2),
regardless of the presence of faulty nodes.

We modify the previous strategy as follows: The source starts flooding with-
out a depth restriction, but with a delay of σ > 1 time steps for each hop. If
the target is reached, a notification message is sent back to the source. Then the
source starts flooding a second time, and this second wave, which is not slowed
down, is sent out to stop the first wave. This continuous ring search needs time
σ ·d and causes a traffic of O

(
(σ+1

σ−1 d)2
)

(see [20, 23] for a proof). The asymptotic
performance is no improvement to expanding ring search, but an area is flooded
at most two times, whereas expanding ring search visits some areas O(log d)
times. We use this advantage for our algorithm.

3 The JITE Algorithm

The Just-In-Time Exploration (JITE) algorithm consists of two parts: Slow
Search and Fast Exploration. Slow Search is a modified breadth-first search
(BFS) algorithm which uses (in contrast to flooding) a path system that is
generated just-in-time by Fast Exploration. This path system is similar to a
quadtree-style grid subdivision and consists of the borders of quadratic sub-
networks, called frames, and perimeters of barriers. Due to space limitations,
we present the basic ideas in the following and refer to [20, 23] for a detailed
description.

The algorithm starts with a search area consisting of four connected frames
with s lying on the common corner (see Fig. 2). These frames are examined
by Fast Exploration: Messages are sent on a traversal path3 along the frame
and—if the frame is intersected by a barrier—along the perimeter of the barrier
(see Fig. 3). If the traversal needs too much time because of a detour caused by
barriers, then the frame is subdivided. The recursive subdivision stops when a
partition of a frame is simple, i.e. a traversal path contains only a bounded num-
ber of border nodes. This way the path system becomes denser in the proximity
of barriers. Slow Search uses this path system and propagates a slowly proceeding
shoreline (i.e. the leaves of the BFS tree) through the network. The path system
is not constructed completely when Slow Search starts. The shoreline triggers
the exploration of new squares in its proximity, so that the traffic-producing
exploration is restricted to areas which are visited by the Slow Search.

3 A traversal uses the well-known right-hand rule: By keeping the right hand always
in touch of the wall, one will find the way out of the maze.
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Fig. 2. Initial frames (solid) and ex-
tended search area.

Frame Barrier

Partition v

Fig. 3. Partition of a frame, defined by
a right-hand traversal path

The search area is successively enlarged until t can be reached4. For the
expansion of the search area we use the idea of continuous ring search: When
the target is found, the source is notified, which sends out messages to stop the
search.

As the exploration takes time, we have to slow down the shoreline, so that there
is always enough time for the exploration. However, to achieve a constant slow
down, the size of the neighboring squares has to be restricted, which is expressed
by the Subdivision Rule: A simple partition of a 3g × 3g frame is subdivided,
(1.) if there is an orthogonally neighboring frame of size g × g or (2.) if there is
diagonally neighboring frame of size g

3 ×
g
3 .

Furthermore, the shoreline may enter a frame from different sides, so that
a coordination mechanism is necessary in order to avoid that the same frame
is explored several times. We solve this by a schedule of traversal messages
that count border nodes and coordinate the concurrent exploration. This Frame
Exploration Algorithm is described in detail in [20, 23].

4 Time and Traffic Analysis

In this section we present proof sketches for the time and traffic analysis. Proofs
can be found in [20, 23].

4.1 Time

The constant competitive time ratio can be achieved because Fast Exploration
constructs a path system that contains a constant-factor approximation of the

4 We assume, that t also lies on a frame, i.e. ||s − t||∞ = 3k for some k ∈ N. If this
is not the case, then we search for any node s′ with ||s′ − t||∞ = 3k with the same
algorithm and restart the algorithm from s′. This increases time and traffic only by
a constant factor.



shortest path tree. Slow Search performs a breadth-first search on this path
system which is delayed only by a constant factor. The allowed detours do not
affect the linear time behaviour because of the following reason. The criterion for
a simple partition in a g× g-frame is that at least 4(g− g

γ(t) ) of the frame nodes
is accessible and that there are at most g/γ(t) border nodes. γ(t) is a function of
the time t when the exploration of a frame starts. We choose γ(t) := log(t), i.e.
the allowed detours are bigger in the beginning. Summing up the allowed detours
in the squares of a recursive subdivision (with frame side lengths ranging from
1 to log(d)) would result in logarithmic time overhead. But this holds only for
a fraction of 1/ log(d) of the frames. For most of the frames g/γ(t) is bound by
O(g/ log d). With these observations we can prove the following theorem:

Theorem 1. Let P be the shortest path with length |P | connecting s and t. The
algorithm finds a path P ′ connecting s and t of length O(|P |).

The shoreline (BFS) is slowed down by a constant factor σ and uses frames that
provide a constant factor approximation of the shortest path. The exploration
of new frames can be always performed in time because the Subdivision Rule
guarantees that neighboring frames differ only by a constant factor in the side
length.

Corollary 1. Let d be the length of the shortest path connecting s and t. The
algorithm finds a path connecting s and t in time O(d).

4.2 Traffic

The traffic depends on the size of the path system, i.e. the number and size of the
frames that are explored and subdivided by the algorithm and that constitute
the search area. A quadtree-style subdivision enclosing barriers with a total
perimeter size p has a size of O(p log d). The traffic caused by the exploration
of each frame is determined by the size of the frame and an additional detour,
which is allowed in simple partitions. This detour adds an additional logarithmic
factor.

We distinguish between barrier-induced subdivisions and neighbor-induced
subdivisions. A barrier-induced subdivision occurs, if at least g/γ(t) barrier nodes
are inside the frame (whether they are found or not). The other subdivisions are
neighbor-induced and due to the Subdivision Rule. In the traffic analysis, a
barrier that causes a subdivision “pays” for the (barrier-induced) subdivision
of the current square as well as for the (neighbor-induced) subdivision of the
neighboring squares. This extra cost adds a constant factor to the traffic for
exploring a single square.

Theorem 2. The algorithm produces traffic O(d + p log2 d).

Corollary 2. The JITE Algorithm has a constant competitive time ratio and
a comparative traffic ratio of O(log2 d). It has a combined comparative ratio of
O(log2 d).



5 Conclusions and Open Problems

Conclusions In this paper we present an algorithm for the routing problem in
faulty meshes which can route a message asymptotically as fast as a the fastest
algorithm and (up to a term of O(log2 d)) with only as many messages as the
number of faulty nodes obstructing the messages plus the minimal path length.
This considerably improves the known factors of O(

√
d) [21] and more previously

of Õ(d
q

log log d
log d ) [22].

This is achieved by the JITE Algorithm combining several techniques. First
we use a continuously expanding search area and establish an adaptive grid of
frames which is denser when many barriers are around. On this grid a slowly
proceeding shoreline simulates a flooding mechanism. This shoreline triggers the
Just-In-Time Exploration (JITE) of new frames that are used by the shoreline.
The artful combination of these techniques lead to an algorithm which needs
time O(d) and traffic O(d + p log2 d) where d denotes the length of the shortest
path and p denotes the number of border nodes being adjacent to faulty nodes.

Open problems This gives rise to the open question whether these bounds are
tight, whether there is a small trade-off between time and traffic. The routing
time is delayed by a large constant factor. It seems achievable to decrease this
factor without an asymptotic increase of the traffic. However, it is not clear
how. Another chance of improvement could be the use of randomized algorithms,
which for many other problems outperform deterministic online algorithms.

A straight-forward generalization of this problem are three-dimensional meshes
with faulty nodes. The JITE Algorithm, however, in its straight-forward general-
ization causes a significant increase in traffic. So the question for efficient online
routing in higher dimensions is wide open.
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21. S. Rührup and Ch. Schindelhauer. Competitive time and traffic analysis of
position-based routing using a cell structure. In Proc. of the 5th IEEE Int.
Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks
(WMAN’05), page 248, 2005.
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