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Abstract

BitTorrent and Practical Network Coding are efficient
methods for sharing files in a peer-to-peer network. Both
face the problem to distribute a given file using peers
with different and dynamic bandwidth and only temporal
availability. For this, BitTorrent partitions the files and uses
the upload and download of each peer. In addition to this,
Practical Network Coding uses a random linear combination
of the parts. The original file can be decoded by a matrix
operation as soon as enough linear combinations have been
gathered at a peer.

It is known that Practical Network Coding optimizes the
network flow in any peer-to-peer network, yet suffers from
the cost of read/write disk operations for encoding and
decoding. In this respect, BitTorrent is very efficient, yet falls
behind because it has to face the coupon collector problem
when distributing parts.

We present Paircoding as an alternative which is re-
garding filesharing at least as good as BitTorrent and
shares nearly the same computational disk access complexity
with BitTorrent. In some scenarios Paircoding outperforms
BitTorrent regarding network flow and performs as well
as Practical Network Coding. Paircoding distributes only a
linear combination of two parts which alleviates the coupon
collector problem of BitTorrent without the computational
overhead of Practical Network Coding.

For analytical proofs of these statements we formalize
filesharing in a peer-to-peer network in a round model and
introduce a computational model which allows to compare
the efficiency of the filesharing algorithms in a distributed
environment. Since BitTorrent tries to overcome the coupon
collector problem with various policies we face a family
of BitTorrent systems. We show that for each BitTorrent
policy there is a Paircoding policy which is at least as good
regarding filesharing quality.

1. Introduction

The distribution of information to a set of hosts in a
computer network is called multicasting. For the Internet
IP Multicast has been provided using message duplication at

router nodes [1], [2]. While this is clearly the best approach,
the construction of an optimal distribution tree is NP-hard.
Furthermore there is no protocol in the transportation layer
implementing reliable delivery, and most Internet service
providers do not offer IP multicast message service and
discard such packets. As a consequence, multicasting must
be implemented using point to point connections based on
TCP or UDP messages. A client-server architecture can
solve this problem by storing the information on the server
and allowing the clients to download it. The drawback is a
natural bottleneck on the server side.

Decentralized peer-to-peer communication can avoid such
bottlenecks. After the introduction of peer-to-peer networks
with efficient lookup service, e.g. CAN [3], Chord [4], Pastry
[5], Tapestry [6], some of these networks were used to im-
plement multicast protocols like Bayeux [7], CAN-Multicast
[8], and Scribe [9]. For this, they establish multicast trees
on the overlay networks. It turns out that a tree for data
distribution is unfair in favor of leaf nodes, since they simply
benefit by downloading the data, while inner nodes upload
more data than they download. An original solution of this
problem was presented with Splitstream [10] where the
given file is partitioned into smaller parts and several trees
are overlaid such that the upload and download of peers
is balanced. However, this scheme relied on a centralized
planning instance for the delivery.

1.1. BitTorrent

Bram Cohen improved this idea to a fully distributed
system, called BitTorrent [11]. Delivery trees are constructed
implicitly by peers interested to share (download or upload)
a file. Such a file is partitioned and peers offer to upload
parts as soon as they have downloaded them. BitTorrent uses
incentives to discourage bad distribution behavior, called
leeching when a peer downloads more than it uploads.
Then the peer is banned (a.k.a. choked) from downloading
further parts. This design works so well, that the peer-to-peer
network users made BitTorrent the first choice to share files
such that BitTorrent is dominating the global peer-to-peer
network traffic for years.

A lot of research has been devoted to the question how to
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Figure 1. BitTorrent under the random selection policy

optimize such incentives using methods from game theory,
e.g. [12], [13]. Different delivery strategies, called policies,
lead to different behaviors. In this paper we concentrate on
efficient network throughput of policies and not on fairness.

Regarding the efficiency of the network throughput Bit-
Torrent reaches fundamental limits as the following example
shows. Peer S wants to distribute a file. In BitTorrent this file
X is partitioned into smaller parts, called blocks x1, . . . , xn.
On the first day only peer A is interested in this file. It
downloads random parts of this file. Yet, because of a slow
Internet connection it manages only to download 50% of
all parts before A is disconnected from the Internet. On the
next day only peer B and peer S are online and analogously
B manages to download 50% of all data parts before now
S is disconnected. On the last day S has disconnected and
peer A and B are active. They now exchange their parts of
the file and in the best case A possesses the parts that B is
missing and vice versa. Then, both peers can complete the
distribution process. This can be easily provided by a policy
that distributes each part once. However, if the seeder S
gave A and B an independent random set of blocks then A
and B can only reach 75% of all parts in the expectation.
One can easily extend this example with a peer C such that
any policy will fail to distribute the information in the final
round as we show later in Theorem 4.4.

1.2. Network Coding

No policy of BitTorrent can overcome the fundamental
problem that at some time a decision has to be made
which block should be distributed. Fortunately, there is an
optimal solution to this problem as been introduced by the
landmark paper presenting Network Coding [14]. Essentially
it says, that if we present the downloading process as a
network flow, then Network Coding can deliver the full file
if there is a flow from the seeder to the peer of the size
of the file. Furthermore, there exists a Practical Network
Coding scheme [15] where network codes are simple linear
combinations of blocks over a finite field.

Referring to the above example, in such a scheme the
seeder would send n

2 code blocks bi =
∑n

j=1 aijxj to peers
A and B. In the last round A and B could exchange these
blocks and recalculate the original code if the matrix (aij)i,j

can be inverted. A condition which can be easily guaranteed,
e.g. with constant probability for a random choice of aij .

While Network Coding allows optimal usage of the
network connections there is a price to pay. First, the
coefficients must be known in advance or be delivered with
the messages. This is only a marginal problem when the
code block size is chosen large enough. Secondly, for the
decoding a matrix operation has to be computed. Again a
minor problem since modern computer power. And thirdly,
for reconstructing the original data at a peer, a matrix
vector multiplication has to be performed (using the inverted
matrix). This is a major problem for large file sizes since
they reside on the hard disks. So, each file must be scanned
and combined just for the reconstruction of one data block.
This constitutes an overhead of n read/write operations for
Network Coding where n is the number of data blocks.
An empirical analysis of the overhead can be found in
[16] where the authors conclude that there is no coding
advantage.

We think that this is the reason why network coding peer-
to-peer systems like Avalanche [17] are not as successful as
BitTorrent. The additional overhead after downloading the
code blocks is simply not acceptable for most users: When
one downloads 4 GByte of data consisting of 1000 blocks,
one does not expect to perform disk operations reading
4000 GByte on each participating host while BitTorrent only
writes 4 GByte of data.

1.3. Our Contribution: Paircoding

Paircoding is a sparse form of Network Coding. Here,
each code block is a linear combination of two original
blocks. In some situations Paircoding provides the same
behavior as Network Coding while the inverse matrix can
be computed in linear time and there is only a linear number
of read and write accesses for decoding necessary. Like in
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Figure 2. Network Coding allows optimal file sharing

Network Coding, Paircoding peers can compute new code
blocks from available code blocks, but not to the full extent.

2. Model Description

Throughout this paper we concentrate on distributing a
single file of length m over an alphabet Σ (e.g. binary
alphabet, bytes, words) which will be partitioned into n
equal units of size s = m

n . We denote the blocks of the
file by x1, . . . , xn. To reconstruct the file from the blocks
the order must be known. We assume that this small amount
of information is implicitly provided by the communication
protocols or can be delivered without extra cost.

Practical Network Coding and Paircoding use linear en-
codings of blocks in finite fields.

Definition 2.1 (Linear code block) A linear code block

bc = (c1, . . . , cn) · (x1, . . . , xn)T

is a linear combination of all n blocks where ci is an element
of the finite field and xi denotes a vector of the block size
s over the finite field.

To denote a Paircoding we use the notation

bi,j,ci,cj
= cixi + cjxj .

When the particular (non-zero random) choice of ci and cj

is unimportant we write bi,j .
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Figure 3. Paircoding is a sparse Network Coding

Note that simple blocks can be seen as a special linear
encoding with a single positive entry in the encoding vector
c. In our model P = {p1, . . . , pk} is the set of peers
which are interested in sharing the file. We consider a round
model where the complete information of the system can be
described by the file sharing state γ(p, t) of each peer after
round t. It is defined as the set of all code blocks that are
available at peer p after round t. A seeder p is a peer with
file sharing state γ(p, 0) = {x1, . . . , xn}.

Definition 2.2 (Progress) For a file sharing state γ(p, t) =
{bc1 . . . , bcr

} the peer’s p progress of the file is the num-
ber of linear independent encodings divided by n, i.e.
1
n rank(c T

1 , . . . , c T
r ).

The sum of the progresses of a set of peers does not
correctly describe the ability to reconstruct the whole file
from the available information. To describe the reconstruc-
tion ability of several peers that may exchange an arbitrary
amount of data, we use the term “availability”.

Definition 2.3 (Availability) The file availability of a set
of peers is the relative number of the linear independent
encodings of the union of the peers’ file sharing states, i.e.
the rank of the combined encoding matrix divided by n.

If the availability is less than one, at least one block of
the file is currently not available and decodable, so that
the file remains incomplete even if all peers may exchange
an arbitrary amount of data/blocks. A lower bound for
the availability is given by the maximum progress of all
considered peers.



Before the first round we face a start situation: All peers
in the set of seeders possess all blocks of the file and all
other peers do not have any blocks.

In each round round a subset of the peers in P is
active. Each peer has a maximum download and a maxi-
mum upload transmission bound which is assigned at the
beginning of each round. All active peers can send in each
round linear combinations of blocks of the file sharing state
of the previous rounds, where the number is limited by
the upload transmission bound. Vice versa the number of
received blocks must not exceed the download transmission
bound. The combination of the set of active peers in a
round and their transmission bounds is called the network
configuration of this round.

At the beginning of a round the set of peers, all transmis-
sion bounds, and the encodings of all file sharing states are
known to all active peers. However, it is not known which
peers will participate in the upcoming rounds and how the
transmission bounds will change.

Definition 2.4 (Policy) The policy of a file sharing state
is the choice of all peers which blocks will be generated
and transmitted in the current round based on the available
knowledge described above.

3. Paircoding

As mentioned in the introduction, full Network Coding
provides optimal results in terms of minimizing the number
of downloaded blocks that are required to provide the whole
original information/file. For practical utilization, however,
decoding the original file from n blocks is too costly due to
the necessary O(n2) read operations. Instead of full Network
Coding, our Paircoding system involves only some coding,
such that decoding remains reasonably cheap.

3.1. Scenario Model

Our main goal is to increase the availability of a file being
shared. However, in best-case-scenarios, a simple system
(e.g. BitTorrent) can be optimal.

Example 3.1 Suppose a file is shared (seeded) by one seed
and there are k leeches downloading that file. Let the file
consist of a large number of blocks (n � k). Furthermore
suppose the seed has a slow Internet connection, while all
leeches have a very fast one.

In this setting the time to distribute the file to all leeches
is obviously lower-bounded by the time it takes the seed to
upload every block once. Assuming that all leeches redis-
tribute each block immediately, the total time to distribute
all blocks (i.e. the whole file) to everyone is only little longer.

Not even full Network Coding (ignoring the decoding’s
complexity) could possibly improve this.

Thus, we focus on scenarios where seeds and leeches
join and leave during file distribution. Especially, the seed
will leave before the first peer completes the download. We
model this as a round-based system. In each round blocks
are exchanged between active peers that all have equal
upload/download capacities. Peers may only join or leave
at the beginning of a round. To model arbitrary residence
times for peers, the length of rounds can be chosen small. If
a peer tries to, but fails to exchange any blocks in one round,
it is considered inactive. This model suffices to describe any
block-based file sharing system.

3.2. Encoding

We base our system on the idea of Network Coding, but
create linear combinations not from all original n blocks.
Instead, the linear combinations (referred to as linear code
blocks) contain only a small number of blocks, more pre-
cisely two, cp. Definition 2.1. So we use encoded pairs of
plain blocks, which results in the name Paircoding. The
linear coefficients ci, cj are non-zero and randomly chosen
in finite fields and included as parameters when linear
code blocks are exchanged during download. Furthermore,
if possible, they are guaranteed to be linear independent.
Simply put, a code block bi,j contains half the information
of the blocks xi and xj it is created from. Thus two different
code blocks made of the same original block contain all
information (i.e. data) of that original block (if given linear
independent coefficients).

3.3. Block Upload Selection

A wide range of different policies to select “good” blocks
for upload is possible. Since this is a research area of its own,
e.g. game theory, and lots of groundwork has been done in
the context of BitTorrent, we do not focus on these aspects.
However, in Theorem 4.3 we prove that Paircoding is at least
as good as BitTorrent.

Encoded blocks can be created from any two available
blocks. Moreover, if two code blocks are part in the same
connected block component (see Definition 3.3) it is possible
to create a new encoded block using any combination of two
of the plain blocks involved. This works similarly to the
recoding (path compression) described in the next section.

3.4. Decoding

When downloading a block bi,j has finished, it is added
to a special data structure to ease decoding. In the following,
we describe this data structure and how it is created while
downloading.

Definition 3.2 (Connected code blocks) We call two code
blocks bi,j and bi′,j′ connected, if they are both created of at
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least one same block, i.e. if exits z ∈ {i, j} and z′ ∈ {i′, j′}
such that z = z′.

Note that two blocks may be single-connected if they
share only one block, or double-connected if they are both
created from the same two blocks. However, in that case
the linear coefficients must be independent, otherwise they
would – except for a factor – be exactly the same code
blocks, together yielding no more information than only one
of them.

For visualization we draw an encoded block bi,j as a
graph with two nodes representing the original blocks from
{x1, . . . , xn} and an edge between them, indicating the code
block created from them. If two blocks are single-connected,
they are represented by a graph with three nodes and two
connecting edges, see Figure 4. The block represented by
the node with the highest degree is then called the head
block. If more than two code blocks are connected, they
can be recoded such that one block is the head and all code
blocks consist of this head and another block.

Definition 3.3 (Connected block component)
A connected block component is a set of ` linear
independent connected blocks in which all encoded blocks
bi,j can be recoded to bh,i or bh,j if i, j 6= h, and h is the
head block. Its number of connected blocks ` is called its
size.

If the recoding is finished for all blocks, we call the block
component a star component with head h.

For an example see Figure 4, on the right. The head block
is x3 and the encoded blocks are b3,1, b3,4, b3,7, and b3,8.

The coding matrix of a connected block component of
size ` has the form (n × `), and its rank is ` − 1. After
downloading bi,j one of the following actions are applied:

1) If neither block i nor j is present in any connected
block component, a new one is created, with i as its
head.

2) If w.l.o.g. only the block i is present in a star com-
ponent with head h, the new block is recoded to bh,j

and added to the component. This is done by using the
present block bh,i with its linear coefficients ch, ci and
the new block bi,j with its linear coefficients ci′ , cj to

h1

a b c

h2

p q

encoded block on disk
new encoded block
virtual encoded block

Figure 5. Merging two star components

calculate bh,j = c−1
i′ cj · bi,j + bh,i. The actual coding

is deferred until the block is read, though.
3) If both blocks i and j are present in two different star

components, they become connected by the new block.
Then all connected code blocks from the smaller star
component are recoded and added to the bigger one,
effectively merging both stars into a larger one. The
actual coding operations are also deferred until the
encoded block is read. Thus, the star component be-
comes equivalent to a disjoint-set forest structure [18],
where our (deferred) coding operation is equivalent to
the path compression, see Figure 5. Note that reading
a block will occur not only at the final decoding of a
star component, but also on uploading to another peer,
thus also initiating a path compression.

4) If both blocks are present in the same star component
it is added to it. If the new linear combination of bi,j

is linear independent of all other blocks in the compo-
nent, the rank of the coding matrix (n× `) increases
by one to `. Hence all blocks of the component can
be decoded.

Lazy coding. To optimize the computation and
read/write overhead, we apply a “lazy” coding scheme
similar to path compression in a disjoint-set forest structure.
Thus, any coding operation is delayed and only a virtual
code block is created to indicate that a particular coding is
possible. This coding is performed upon request, i.e. when
a virtual code block has to be read. The component given
in Figure 5 has three virtual code blocks bh1,h2 , bh1,p, and
bh1,q . If for example bh1,q is requested for reading, it will
be created, effectively removing bh2,q . Thus, at some time,
the connected block component will be recoded to a star
component.

Decoding a star component can be done fast by decoding
the head block first. After that, decoding all other blocks is
simple, since they are all connected to the head, see Figure 6.

4. Analysis

We now present an analytical method to compare the
effectiveness of file sharing systems and compare BitTorrent,
Network Coding, and Paircoding.

Definition 4.1 (Performance relation) A file sharing sys-
tem S1 is at least as good as a system S2, noted as
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S1 ≥ S2, if both systems begin with the same starting
situation and are confronted with the same sequence of
network configurations. Then, for every peer the progress
in S1 is at least as large as its progress in S2.

If there is a starting situation and a sequence of network
configurations where a peer in S1 has larger progress than
this peer in S2 and if S1 ≥ S2, we say S1 outperforms S2,
i.e. S1 > S2.

Corollary 4.2 To distribute file X = (x1, . . . , xn), Network
Coding requires only the minimal number of blocks n, which
is optimal.

Theorem 4.3 Paircoding shares files at least as good as
BitTorrent:

PAIRCODING ≥ BITTORRENT

Proof: Let the peers P = p1, . . . , pk distribute file X =
(x1, . . . , xn) and PBT an arbitrary BitTorrent policy. Then,
according to PBT a peer p with file sharing state γ̃ = γ(p, t)
selects the block

PBT(γ̃) = xi

for distribution, 1 ≤ i ≤ n. Then, when using Paircoding
and its policy PPC, p chooses

PPC(γ̃) = bxi,xn−i

Thus, when every block xi has been selected once for
distribution by PBT, i.e. the whole file is distributed, it has
been selected for encoding in a Paircoding block exactly
twice by PPC. This is sufficient to allow the decoding of
every block and hence delivers the original file with the same
amount of distributed data as required by BitTorrent.

Theorem 4.4 For some scenarios, Paircoding performs as
good as Network Coding and better than BitTorrent.

Proof: We describe a scenario that consists of four
discrete rounds, all of the same length. We assume that
upload and download capacities of all peers are equal. As the
length of one round we choose the time it takes to transmit
half of file X . First we will analyze the performance of
Paircoding and after that we will point out the differences
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Figure 7. In this scenario Paircoding outperforms Bit-
Torrent

of BitTorrent. Finally we apply the scenario to Network
Coding.

We consider the following round-based scenario with one
seed and three leeches. The seed p1 provides the complete
file X = (x1, . . . , xn), n ∈ N and n even, desired by all
three leeches p2, p3, and p4. At the beginning the progress
of p2, . . . , p4 is zero. In the first three rounds, the seed and
exactly one of the leeches are active. During one round,
the seed can upload 50% of the file size, i.e. n

2 (encoded)
blocks can be downloaded by the active leech in one round,
cp. Figure 7.

Paircoding. In rounds r ≤ 3 the seed creates and
transmits the encoded blocks

b1,2,cr
1,cr

2
, b3,4,cr

3,cr
4
, . . . , bn−1,n,cr

n−1,cr
n

In each round the linear coefficient used for block bi,j must
be linear independent from the ones used in previous rounds:

∀δ, r1, r2 | r1 6= r2 : (cr1
i , cr1

j )T + δ · (cr2
i , cr2

j )T 6= 0

In the final round r = 4, any two of the three leeches
p2, . . . , p4 are active, while the third one and the seed are
not available. W.l.o.g. let p2 and p3 be active. Again, both
can download n

2 encoded blocks (now simultaneously while
uploading). Thus, all data between p2 and p3 is exchanged.
Since then two encoded blocks bi,j,c

r1
i

,c
r1
j

and bi,j,c
r2
i

,c
r2
j

from the rounds r1, r2 are available to each of the active
peers, and the linear coefficients (cr1

i , cr1
j )T and (cr2

i , cr2
j )T

are linear independent, all blocks can be easily decoded by
solving(

xi

xj

)
=

(
bi,j,c

r1
i

,c
r1
j

bi,j,c
r2
i

,c
r2
j

)
·
(

cr1
i cr1

j

cr2
i cr2

j

)−1

Hence, for any possible last round, every original block can
be decoded, yielding a progress of one, i.e. the whole file
X , for both active peers. Consequentially, the availability of
X also equals one.



Note that in this scenario the seed is not necessarily
required to use the same block combinations for encoding
in each round. However, it is important that in each round
each block x1, . . . , xn is used exactly once in an encoded
block.

BitTorrent. We show that for our scenario the upper
bound of availability that BitTorrent can guarantee after the
final round is 5

6 and hence less than achieved by Paircoding.
We model the scenario as a two-player-game. The first

player may choose the blocks in each round with full
knowledge of rounds one to three. He tries to maximize
the availability in round four, while the secondary player
acts as adversary who chooses the two peers in round four
to minimize the availability. The following strategies hold
for player one:

• Send each block at least once. Otherwise, one block is
completely missing for any peer combination in round
four.

• No peer receives a block more than once.
• No block is sent more than twice, since two copies of

a block suffice to guarantee its presence in round four.
• Minimize the overlapping of blocks between two peers

for any combination of them.
The adversary merely selects the combination with the
lowest availability in the last round. This is equivalent
to select the combination with the largest overlapping of
blocks, which is the reason for the last rule of player one.

Let A,B,C the set of blocks at peers p2, p3, p4, and each
peer receives one half of the whole file, i.e. |A| = |B| =
|C| = 1

2n. W.l.o.g., let |A∩B| = x and |A∩C| = y. Then
it follows

|B ∩ C| = z =
1
2
n− x− y

For symmetry reasons x = y = z, as any asymmetry helps
the adversary. So,

x =
1
2
n− 2x =

1
6
n

The overlap between any two peers is 1
6n. This leaves the

relative information available in round four of n− 1
6 n

n = 5
6

which proves the claim.
Network Coding. For Network Coding, any n encoded

blocks are sufficient to decode X , if the linear coefficients
are pairwise linear independent. Under this assumption, any
two peers can decode X in the last round after exchanging
their data. This yields the same performance for both Pair-
coding and Network Coding in this scenario. Furthermore,
Network Coding has the same values for availability in each
round.

This concludes the proof of the theorem.

We assumed that upload and download do not interfere
and all data can be exchanged in the last round. Instead of
this assumption, we could also double the duration of the

last round, or even increase it to infinity. The results would
remain the same.

Corollary 4.5 Paircoding outperforms BitTorrent, i.e.

PAIRCODING > BITTORRENT.

5. Cost of Paircoding

Definition 5.1 (Read/write cost) We define read and write
cost as the total number of blocks that need to be read or
written until the file is decoded and saved on hard disk and
denote it by Cr and Cw, or Crw respectively.

Since reading and writing could have different delays
on hard disks, we may distinguish between read and write
cost. In our case, we consider blocks as information pieces.
File sharing in general obviously requires at least one read
operation at the sender and one write operation at the
receiver, so Cr = Cw = 1 is a general lower bound.

Theorem 5.2
1) Paircoding has worst case read/write cost of O(n ·

α(n, n)), where α(x, y) = min{i ≥ 1 : A(i, bx/yc) >
log y} is the inverse of Ackermann’s function.

2) Paircoding requires disk space m if m is the size of
the shared file.

Proof:
1) We assume that any computation can be done in main

memory and does not require additional disk access.
I.e., the block size should be small enough to easily fit
into main memory. However, during download, blocks
are saved on disk in order not to loose any data in case
the download is interrupted.
The read cost for the seed are obviously O(n), since
at most two blocks must be read to create one encoded
block for upload. Depending on the upload policy
and implementation optimization, the constant factor
may be as small as (1 + ε), ε > 0. This can be
achieved when consecutively sending the encoded
blocks b1,2, b2,3, . . . , bn−1,n, bn,1. Here, the second
original block of an encoded block is used as the first
original block in the next encoded block, thus it does
not have to be read again.
As described in Section 3.4, the read/write cost for
peers correspond to the computation cost of union
find with path compression for disjoint-set forrest
structures. This is known to be worst-case bounded
by O(n · α(n, n)), which prooves the claim.

2) Since the whole coding process can be done in-
place and only requires additional main memory (cp.
Section 3.4), no additional disk space is required.
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Figure 8. Simulation of decodability for one peer

6. Empirical Tests

To compare Paircoding, Network Coding, and BitTorrent
regarding the coupon collector problem, we simulated the
following scenario. One seed distributes a file of n = 30
blocks to a leech under the uniformly distributed random se-
lection policy. For BitTorrent the seed randomly selects one
block for upload, while for Paircoding the seed randomly
chooses two blocks and then uploads a linear combination
(code block) of them. In case of Network Coding each
code block is a linear combination of all n blocks. The
results, averaged from 100,000 simulation runs, are shown
in Figure 8. The curves denote the percentage of decoded
(available) blocks at the receiver peer.

While the amount of blocks transferred is identical in each
round, the numbers of decodable blocks are very different:
Until round 22, BitTorrent can provide more data because
Paircoding cannot decode the received code blocks, yet. Af-
ter that, however, Paircoding overtakes and has clearly more
success in providing new data. Here, we have considered the
situation from the user’s perspective. In fact, the progress of
Paircoding outperforms BitTorrent from the start, since the
probability of transmitting linear dependent pair codes is
much smaller than the probability of transmitting the same
block. Network Coding requires exactly n independent code
blocks to decode everything.

We also simulated the performance regarding the avail-
ability of a file with n = 100 blocks depending on the
number p of downloading peers. In this setting, each peer
receives bn/pc blocks from a seed. Additionally, n−p·bn/pc
peers receive one extra block, so that the sum of all
downloaded blocks equals n. For each peer the selection
of blocks is coordinated, i.e. no peer receives two redundant
(either identical or linear dependent) blocks. Furthermore, in
case of Paircoding, no original block is selected more than
once per peer for encoding, if p ≥ 2. Coordination between
peers is not allowed, though. Finally, the availability of the
file is measured, if all downloading peers are active, while
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Figure 9. Simulation of availabilty for increasing number
of peers

the seed is inactive. This setting is closely related to the
scenario we used in the proof of Theorem 4.4.

The diagram in Figure 9 shows the results averaged from
100 simulations for an increasing amount of peers up to p =
100. All three systems start with availability one, since block
selection can be coordinated for a single peer so that the sole
peer receives n independent blocks. When increasing the
number of peers, the curve of Paircoding converges quickly
to 1− 1

e , according to the coupon collector problem. In case
of Paircoding and two peers, the availability is still one, cp.
scenario in Figure 7. For p ≥ 3 the curve converges only
slightly slower to a value of approximately 1− 1

e2 . Network
Coding provides full availability in all cases.

7. Summary and Outlook

We have introduced a new sparse network coding scheme,
called Paircoding, which is based on linear combinations of
two file blocks and we have compared this scheme with
BitTorrent and Network Coding. Paircoding requires a near
optimal number of disk read/write operations while provid-
ing some benefits from Network Coding. We have given
analytical proofs that the number of read/write operations
is only a factor of α(n, n) higher than the optimal linear
number of operations e.g. required by BitTorrent (where
α(n, n) is the inverse Ackermann function). Other network
coding schemes provide a much higher number of disk
operation which increase by number of partitions of the
original file.

To compare the success of a file sharing systems and the
possibility to overcome the coupon collector problem we
have introduced a complexity measure for block based file
sharing systems. With this methodology we can show that
Paircoding outperforms BitTorrent while Network Coding
outperforms all of them. In some instances Paircoding can
keep up with Network Coding where BitTorrent does not.



In the tradeoff situation of disk operations and file sharing
effectiveness Paircoding ranks between the other schemes as
an excellent compromise. These theoretical results have been
backed by simulation.
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