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ABSTRACT
Modern peer-to-peer file sharing systems distribute large
files among peers using block partitioning. Blocks can be re-
distributed by a peer even before the whole file is available
which highly decreases the distribution time. All peer-to-
peer networks face the problem of dynamic participation of
the peers and dynamic bandwidth in the network. A leaving
peer can cause an unrecoverable loss of blocks and obstruct
further downloads of the file. Furthermore, the choice which
block needs to be sent to which peer is a hard question. A
random choice leads to the coupon collector problem which
decreases the transmission rate. Filesharing networks like
BitTorrent or Splitstream face such problems.

Network Coding overcomes this problem by using error
redundant codes of all blocks of the file. An efficient ran-
domized variant of it, Practical Network Coding, transmits
and recombines random linear combinations of the blocks
of the partitioned file. As soon as enough linear combina-
tions have been gathered, the original file can be decoded
by a matrix operation, optimizing the network flow in any
peer-to-peer network.

All known Network Coding schemes, however, suffer from
a quadratic cost of read/write disk operations for both en-
coding and decoding. Since there is an increasing gap be-
tween the speed of mass storage devices and the main mem-
ory, this poses an obstacle to a wider use of Network Coding
schemes.

In this paper we present and investigate new network cod-
ing schemes, which form a compromise between Network
Coding and uncoded block transfer schemes like BitTor-
rent. These schemes, called Paircoding and Treecoding have
smaller read/write costs for encoding and decoding than
Practical Network Coding and higher throughput than Bit-
Torrent.

We develop a new framework for comparing the through-
put of data (performance) of such peer-to-peer file sharing
systems and classify these systems, as well as a BitTorrent
variant which uses forward error correction. The dynam-
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ics of peer-to-peer networks are described by a round model
where the set of participating peers and their link quality
changes after each round. The framework compares two
schemes for all possible dynamic scenarios. If the transmis-
sion rate of scheme A is at least as well as scheme B, then we
say A performs as well as B. If this is the case and there is
a scenario where A is better than B, we say A outperforms
B. We show that all of our proposed coding schemes out-
perform BitTorrent, while being outperformed by Network
Coding.

This leads to a hierarchy, where BitTorrent is the worst
performer and Network Coding is the best performer regard-
ing throughput. Regarding computation (disk read/write)
complexity for decoding, BitTorrent and Foward Error Cor-
rection have linear time behavior, for Paircoding it is almost
linear, Treecoding with one coding tree needs time O(n) and
Network Coding has time O(n2).
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uted Systems — Distributed applications;
E.4 [Data]: Coding and Information Theory — Nonsecret
encoding schemes;
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1. INTRODUCTION
Information distribution is one of the central objectives

in the Internet. For small documents, like web pages, it is
possible to separately deliver it to each requesting host. For
larger documents and many requesting hosts this leads to a
bottleneck at the server’s side. This problem can be resolved
by the IP Multicast protocol where routers duplicate packets
and relieve the bottleneck at the server [17, 6]. While this is
clearly the best approach, IP Multicast provides only sub-
optimal distribution trees because of the NP-hardness of this
problem. More important, the IP Multicast protocol does
not provide reliable delivery, and it is not supported by most



Internet service providers at all. So, IP Multicast remained
on the fringes of the Internet. Yet, high user demand lead
to the implementation of multicasting on overlay networks
using point-to-point TCP or UDP messages.

Most peer-to-peer networks are designed for data distribu-
tion. The hype started with Napster and Gnutella. Then, in
the first years the main focus was to find efficient lookup ser-
vices and robust network structures, e.g. CAN [12], Chord
[16], Pastry [15], and Tapestry [8]. For some of these net-
works extensions were proposed for efficient multicast like
Bayeux [19], CAN-Multicast [13], and Scribe [3]. They pro-
vide multicast trees, filling the gap of multicasting in the IP
layer.

Multicast trees favor leaf peers, since they do not need
to upload data which is generally the scarce resource due
to asymmetric Internet connections. A fair solution for all
peers was presented with Splitstream [2]. In Splitstream
each file is partitioned into smaller parts and multiple trees
are overlaid to balance both upload and download of all
peers.

BitTorrent.
Inspired by the approach of Splitstream, BitTorrent [5]

was designed and became the most successful block-based
file sharing system. BitTorrent does not use any encod-
ing except for error detecting hash values of each block
which does not contribute to data throughput. A download-
ing peer can retrieve blocks from several peers in parallel.
When downloading, a peer can upload already completed
blocks. The decision which blocks to distribute is made ad-
hoc taking the behavior of other peers into account. This
mechanism is called policy (see Definition 4) and it deter-
mines which block should be uploaded to whom. BitTor-
rent uses incentives to discourage bad distribution behavior,
called leeching, when a peer downloads more than it up-
loads. Eager uploading is encouraged by sending such peers
more blocks. This game-theoretic setting maximizes net-
work throughput.

A lot of research has been devoted to the question how to
optimize such incentives using methods from game theory,
e.g. [9, 11]. While this explains the speed and the popu-
larity of BitTorrent to a great deal we concentrate in this
paper not on the game-theoretic aspects which is a vivid
area of research at the moment. We concentrate on unsolv-
able shortcomings of a block-based approach which cause
delivery failures because of missing blocks. BitTorrent is
not capable to compensate a missing block. Whenever there
is a block, that is not available at any of all participating
peers (i.e. the availability is less than one, see Definition 3),
none of them can ever finish the download.

Network Coding.
An optimal solution to the problem of availability is pro-

vided by Network Coding. The Practical Network Coding
scheme [1, 4] gives an efficient implementation. Instead of a
plain block, a linear combination of all blocks is created and
transmitted. Each block is interpreted as a vector over a
Galois field. Then, if all linear coefficients used are linearly
independent, any n code blocks are sufficient to decode the
original file. Such linearly independent vectors can easily
be achieved with high probability by a random choice if the
order of the finite field is chosen large enough.

Furthermore, new encodings can be computed at peers
which do not have enough code blocks to decipher the orig-
inal file. For this a peer uses a random linear combination
of all received blocks. So, a peer does not need to decide
which of the already received blocks should be forwarded.
It recodes the code dynamically.

Definition 1. If only the seed is allowed and able to cre-
ate code blocks with linear coefficients, and forwarding peers
can only redistribute these code blocks, we call this a static
coding scheme. If any peer is allowed and able to cre-
ate new code blocks from other code blocks already present
(recoding), we refer to this as a dynamic coding scheme.

We will discuss coding schemes that are unable to create
new code blocks without a prior decoding of the original
file, e.g. Treecoding (see Section 5). There are other coding
schemes, e.g. FEC (see Section 2), that could use recoding,
but they may increases the decoding complexity up to that
of Network Coding, which is not reasonable as it would make
the scheme obsolete.

The drawback of Practical Network Coding is its high
computational overhead along with its many disk access op-
erations: To decode one block it is necessary to read all code
blocks from the hard disk, leading to a disk reading com-
plexity of O(n2) for decoding n blocks of information. Some
system approaches like Avalanche [7] use Network Coding.
Yet, such schemes by far did not reach the success of Bit-
Torrent. Moreover, some empirical analysis of the overhead
conclude that there is no or only little advantage in such a
coding for peer-to-peer systems [18].

The Model.
We follow the model of [10] presenting Paircoding. In this

section we give a brief summary of it and refer to [10] for a
more detailed description.

Throughout this paper we concentrate on distributing a
single file of length m over an alphabet Σ (e.g. binary al-
phabet, bytes, words) which will be partitioned into n equal
units of size s =

˚
m
n

ˇ
. We denote the blocks of the file by

~x T = (x1, . . . , xn)T as vectors over a finite field. The last
block may be filled up with zeros. We assume n = 2i, i ∈ N+

since this supports the binary presentation of data. To re-
construct the file from the blocks the order must be known.
We assume that this small amount of information is implic-
itly provided by the communication protocols or that this
extra cost can be neglected.

All coding schemes presented use linear encodings of blocks
in finite fields:

Definition 2. A linear code block

b~c = (c1, . . . , cn) · (x1, . . . , xn)T = ~c · ~x T

is a linear combination of all n blocks where ci is an element
of the finite field and xi denotes a vector with block size s
entries over the finite field.

To denote a code block created with a vector ~c, where ~c
has non-zero values at positions a1, . . . , aj , j ∈ {1, . . . , n},
we write b~c (a1, . . . , aj) or, if the non-zero values are not
important, b(a1, . . . , aj).

In both notations the i’s represent the position of a block in
the original file order. Note that simple blocks can be seen
as a special linear encoding with a single non-zero entry in



the encoding vector ~c. For decoding the receiver must know
these coefficients. Again we assume that this small amount
of information (compared to the block size) is implicitly pro-
vided by the communication protocols or that this extra cost
can be neglected.

In our model P = {P1, . . . , Pk} is the set of peers which
are interested in sharing the file. We consider a round model
where in each round peers can upload and download certain
numbers of blocks. Before the first round we face a start
situation: A set of seeding peers has all blocks of the file
and all other peers do not have any blocks.

The complete information of the system can be described
by the file sharing state γ(P, t) of each peer after round t.
It is defined as the set of all code blocks that are available
at peer P after round t. A seed P is a peer with file sharing
state γ(P, 0) = {x1, . . . , xn}.

In each round a subset of the peers in P is active. Each
peer has a maximum download and a maximum upload
transmission bound which is assigned at the beginning of
each round. With this approach we model the bottleneck
of data throughput that usually appears in the last mile of
Internet connections caused by asymmetric low bandwidth
dial-up or DSL connections. In each round all active peers
can send code blocks, i.e. linear combinations of blocks of
the peer’s file sharing state of the previous rounds, where
the outgoing number is limited by the upload transmission
bound and the ingoing number of blocks is limited by the
download transmission bound. The combination of the set
of active peers in a round and their transmission bounds
is called the network configuration of this round. An
example for a network configuration is given in Figure 1.

At the beginning of a round, the set of peers, all transmis-
sion bounds, and the encodings of all file sharing states are
known to all active peers. However, it is not known which
peers will participate in the upcoming rounds and how the
transmission bounds will change.

To measure the performance of a coding scheme, we use
the progress and the availability. While the former is more
related to the performance of a single peer, the latter mea-
sures the success of all peers currently active.

Definition 3. For file sharing state γ(P, t) = {bc1 . . . , bcr}
the progress of the file at peer P is the number of linearly
independent encodings available at P divided by n, i.e. 1

n
·

rank(c T
1 , . . . , c T

r ). The file availability of a set of peers is
the relative number of the linearly independent encodings
of the union of the peers’ file sharing states, i.e. the rank of
the combined encoding matrix divided by n.

In other words, the availability measures the share of in-
formation fraction that is currently available, if all active
peers share their information. Obviously, this value equals
one if any seed is present.

Definition 4. The policy of all peers with a given file-
sharing state is the decision, which blocks will be generated
and transmitted in the current round based on the available
knowledge described above.

The policy of a file sharing system has great impact on its
performance. However, in this paper we do not concentrate
on the optimization of distribution policies, but we analyze
and present different coding schemes. Thus we either stick
to general and simple policies, e.g. random selection, or our
analyses remain policy-independent.

To classify different coding schemes, we use a relation that
is based on the progress of the peers involved.

Definition 5. A file sharing system S1 performs at least
as well as a system S2, noted as S1 ≥ S2, if both systems,
started from the same situation and confronted with the
same sequence of network configurations, experience that
every peer in S1 has at least a progress as large as its progress
in S2. If systems S1 and S2 allow different policies, then S1

performs at least as well as S2 if for each policy of S2 there
is a policy in S1 which performs at least as well.

If S1 ≥ S2 and in addition there exists a starting situation
and a sequence of network configurations where a peer in S1

(with a given policy) has larger progress than this peer in S2

(for all possible policies), we say S1 outperforms S2, i.e.
S1 > S2.

The other important measure is the read/write cost. We
mentioned above, that network coding is capable of opti-
mally solving the problem of data distribution in terms of
progress and availability. The drawback is its high com-
putational cost, which is dominated by the read/write ac-
cesses of the hard disks. Usually, the user’s main focus is
on the decoding of the file. Therefore, we concentrate on
these costs in this paper. We are aware that seeds and peers
that need to update the coding for retransmission have ad-
ditional read/write costs. Since this time takes place during
the transmission which is commonly much slower it does not
incommode the user.

Definition 6. Every peer uses main memory which can
store a constant (non-zero) number of blocks. We define
read and write cost as the total number of blocks that
need to be read from or written to disk to decode the file
and save it on hard disk at a receiving peer. We denote this
cost by Crw.

2. FORWARD ERROR CORRECTION
Forward error correction (FEC) as a compromise between

BitTorrent and Network Coding has been proposed and eval-
uated in [7]. The idea is to mainly use plain blocks for
distribution and add c linearly independent complete net-
work code blocks, i.e. using κ Reed-Solomon code blocks
[14]. Each such network code block can compensate the loss
of one plain block. Thus, at least n plain blocks and FEC
blocks are necessary and required to decode the file. We do
not consider the recoding of FEC blocks, since on the long
run (i.e. for an arbitrary amount of peers) this would end up
in an arbitrary number of FEC blocks, even if the number
of recodings allowed for each peer is limited. This would
be equivalent to Network Coding. So, forward error correc-
tion is a static coding scheme and we denote it by FEC(κ).
As a reasonable block selection policy one could start with
downloading all κ code blocks followed by n−κ plain blocks.

For the computation of a single FEC block all n blocks
need to be combined. So, the read cost is κn and the write
cost is κ. Yet, the time complexity refers only to the decod-
ing.

Lemma 1. FEC(κ) has read/write cost

Crw(FEC(κ)) = O(min{κn, n2})

Proof. For decoding, a peer needs at most n blocks
where some ` ≤ κ blocks are FEC blocks. With O(`(n− `))
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Figure 1: Example for network configurations for P = {A, . . . , K, S}, where S is the only seed. Active peers
are colored gray and their transmissions are indicated by the thickness of the ingoing and outgoing arrows.
In the first round the seed is the only uploading participant. In the second round peers D and G also start
to upload data, thus increasing the total network flow. The last round depicts a situation where the seed is
inactive. We use this situation in some of our proofs.

additions and scalar multiplications the uncoded blocks can
be removed from the linear combination of the FEC blocks
and the coefficients. It remains to compute an inverse ma-
trix of the residual ` × `-matrix (which we assume can be
performed in main memory and thus does not add costs to
the disk time measure) and multiply the resulting inverse
with the vector of former FEC blocks. This adds costs of
O(`n). Summarizing we have the relevant disk time cost for
decoding of O(`n) = O(κn).

The theorem below classifies FEC as a coding class be-
tween BitTorrent and Network Coding.

Theorem 1. For all κ ≥ 0 we have

1. FEC(0) = BitTorrent

2. FEC(κ) < NetworkCoding

3. FEC(κ) < FEC(κ + 1)

Proof.

1. By definition FEC(0) and BitTorrent are equivalent.

2. Consider a policy for FEC(κ). Then we can find a
policy for Network Coding such that both systems are
equivalent. For this, the Network Coding policy cre-
ates the very same code blocks (or uncoded blocks) as
FEC(κ) which proves FEC(κ) ≤ NetworkCoding.

To prove the superiority of Network Coding we con-
sider the following scenario. In round i only seed S
and peer Pi are active (i = {1, . . . , κ + n + 1}) and S
can transmit only one block to Pi. Finally in round
κ+n+2 the seed is inactive and n random (non seed)
peers are active. This scenario is depicted in Figure 2.

In round κ + n + 1 every policy for FEC(κ) has either
transmitted a block twice or at least one of the peers
Pi has no block. So, in the case of a duplicated block

with probability of at least n(n−1)

(κ+n+1)2
the duplicated

block occurs twice in the last round and therefore the
availability is at most 1− 1

n
. In the case of at least one

missing block the probability of the same sub-optimal
availability is at least n

κ+n+1
.

Network Coding can solve this problem optimally by
choosing κ+n+1 independent linear coefficients. This
is possible if the base of the underlying Galois field is
large enough.

3. The same scenario is used in this case. The opti-
mal policy for FEC(κ + 1) is to transmit κ + 1 error-
correcting code blocks in the first κ + 1 rounds and n
uncoded blocks in the subsequent rounds. Again the
availability after the last round is one, since because
of κ + 1 error correction blocks there are neither du-
plicated nor missing blocks.

With FEC(κ) we have a coding scheme that easily out-
performs BitTorrent. However this comes at the cost of in-
creasing read/write operations, leading to a cost of up to
O(n2) equaling Network Coding. Since FEC is static, it can
be outperformed by Network Coding. In [7] empirical evi-
dence was presented for both performance relations. Good
reasons for FEC are the linear efficiency for small κ and the
provision of at least some redundancy.

3. PAIRCODING
We have presented Paircoding [10] as a sparse form of Net-

work Coding. Here, each code block is a linear combination
of at most two original blocks. The advantage is, that the
matrix inversion necessary for decoding can be computed in
linear time. Further, only an almost linear number of disk
read/write accesses is necessary for decoding. Moreover, the
decoding can be done during download, i.e. it continues with
each new downloaded code block. In contrast to this, Net-
work Coding can start the decoding process only if all n
code blocks have been downloaded already. Paircoding is
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Figure 3: In this scenario Paircoding and Fixed Pair-
coding outperform BitTorrent and perform as well
as Network Coding.

a dynamic coding scheme, i.e. peers can recode new code
blocks from other code blocks not decoded yet.

In Paircoding each code block combines at most two blocks
xi, xj into a code block b~c (i, j) = c1xi + c2xj , where the
choice of the positions and (possibly zero) coefficients is de-
scribed by the policy. Consider a multigraph where the file
blocks are the node and code blocks are the undirected edges.
Then, a cycle in this graph indicates that all nodes of the
connected component can be decoded. Furthermore, if a
file block is available, then all connected nodes in the multi-
graph can also be decoded. So, the Paircoding policies can
easily be described by graph properties and operations.

A straight-forward observation is that it is favorable to
distribute disjoint pair code blocks such that all file blocks
are covered after delivering half of all blocks. Then, any two
peers with progress 1

2
can decode the file and thus have full

availability of the file. Using this technique we have proved
in [10] the following theorem for the scenario depicted in
Figure 3.

Theorem 2. [10]

1. For some scenarios, Paircoding performs as well as
Network Coding.

2. Paircoding outperforms BitTorrent:

Paircoding > BitTorrent

Paircoding is able to recode blocks within a connected
component of the above mentioned multi-graph. While the
decoding of the file can be done with linear disk read/write
operations, the recoding induces little extra cost for provid-
ing union/find like recoding operations. This has lead to the
following theorem.

Theorem 3. [10] Paircoding has read and write cost of
O(n ·α(n)), where α(x) = min{i ≥ 1 : A(i, 1) > log x} is the
inverse of Ackermann’s function.

4. FIXED PAIRCODING
If we restrict Paircoding to code blocks combining only

the blocks x2i−1 and x2i for 1 ≤ i ≤ n
2

we call this coding
scheme Fixed Paircoding. In some scenarios it performs as
well as Paircoding. We show that it outperforms BitTorrent
and that it is outperformed by Paircoding.

Theorem 4. Fixed Paircoding outperforms BitTorrent:

FixedPaircoding > BitTorrent

The proof is analogous to Paircoding > BitTorrent as
shown in [10].

Theorem 5. Paircoding outperforms Fixed Paircoding:

Paircoding > FixedPaircoding



S

A

n
2 blocks

round 1

S

B

round 2

n
2 − 1 blocks

S

C1

round 3

1
2 blocks1 block . . .

S

Cn/2

round n/2 + 2

1
2 blocks1 block

A

Ci

last round, case 1

B

A

Cn/2

last round, case 2

C1

C2

...

Figure 4: Scenario of the proof of Theorem 5 which
proves Paircoding > FixedPaircoding.

Proof. Obviously, Paircoding ≥ FixedPaircoding,
since Fixed Paircoding is a more restricted version of Pair-
coding.

Regarding outperformance consider the following scenario,
Figure 4. In the first round the seed S can upload n

2
code

blocks to peer A. In the second round the seed can upload
n
2
−1 code blocks only to peer B. In the following n

2
rounds

the seed can upload only one block to each of the peers
C1, . . . , C n

2
. Then with probability 1

2
the scenario activates

peers A and C1, . . . , C n
2

with unlimited bandwidth. With

probability 1
n

it activates A, B and Ci for i ∈ {1, . . . , n
2
}.

First we prove that Fixed Paircoding cannot achieve the
full availability in all cases. The only possibility to achieve
an availability of one in the first case where A and C1, . . . , C n

2
are activated in the last round is to send different pairs to
the peers C1, . . . , C n

2
. But then only for one of the other

n
2

cases the availability can be one. This is the case if the
missing pair block of B is provided by the active peer Ci. In
all other cases the availability is at most 1− 1

n
, see Figure 5.

Hence, the probability of a failure of any Fixed Paircoding
policy is at least 1

2
(1− 2

n
).

Paircoding can use the following policy to achieve full
availability. A receives combinations of blocks b(2j − 1, 2j)
for j ∈ {1, . . . , n

2
}. B receives blocks b(2j, 2j + 1) for j ∈

{1, . . . , n
2
−1}. Each peer Ci receives block b(2i−1, 2i) with

linearly independent coefficients from the blocks of A. In all
cases the multigraph consists of one connected component
with a cycle, which implies full availability.
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Figure 5: Example file sharing states of the proof
of Theorem 5. For both coding systems peer A has
received n

2
blocks and peer B has n

2
− 1 blocks. Peer

C3 has been randomly chosen from C1, . . . , C5. As
shown in the proof, Paircoding succeeds in decoding
the file while Fixed Paircoding cannot decode the
blocks x9 and x10.

The main advantage of Fixed Paircoding is its low com-
putational cost.

Lemma 2. Fixed Paircoding has read/write cost of O(n).

Proof. To decode a block xi, only two different code
blocks of form b(i, i+1) with different linear coefficients are
required. The same blocks can simultaneously be used to
decode xi+1. Thus the total read/write cost are O(n).

5. TREECODING
Now we define Treecoding which features uncoded blocks,

forward error correction blocks, as well as Fixed Paircoding
blocks. Here, code blocks are defined by a complete binary
tree. We assume that n is a power of two which can be
achieved by choosing the block size appropriately and filling
up the last block with zeros. The leaves of this tree form
the uncoded blocks of Treecoding multiplied by a coefficient.
Starting from the second layer code blocks are generated by
adding two children code blocks, i.e. computing the vector-
wise Xor of the code blocks.

b log n
i (~c) = cixi for i ∈ {1, . . . , n}

b j−1
i (~c) = b j

2i−1(~c) + b j
2i(~c) for j ∈ {1, . . . , log n− 1},

i ∈ {1, . . . , 2j−1}

The central property of this coding tree is stated in the
following lemma which follows directly from the definition.
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8(~c), i ∈ {1, . . . , 8}.

Lemma 3. If ~c is known, then any code block (node) in
the coding tree can be calculated by a simple Xor operation

1. from its two children code blocks, or

2. from its parent code block and its sibling.

A reasonable policy for Treecoding is to start to transmit
the root block b0

1(~c) which is in fact a forward error correc-
tion block from a Reed-Solomon code. Then, the policy dis-
tributes the children blocks by sending one code block b1

1(~c)
and computing the sibling b1

2(~c) using the lemma above.
This way, the tree is distributed and computed from the
root to the leaves by sending exactly n code blocks.

Redundancy in Treecoding is limited, however. To fur-
ther increase redundancy, we use several coding trees with
different coefficients. Especially in highly dynamic scenar-
ios, where downloading peers join and leave the network,
multiple coding trees are beneficial. So, a coding tree is
defined by the coding vector ~c.

Definition 7. If we use Treecoding with at most κ coding
trees denoted by the linear coefficients ~c1, . . . , ~cκ, we call this
class Treecoding(κ).

Decoding from multiple coding trees is computationally
more complex. This can be seen from the extreme case
where n coding trees are allowed and only the root blocks
are distributed. Then, Treecoding is as complex as Network
Coding. However, for a small number of trees the decoding
remains feasible.

Theorem 6. Treecoding(κ) has read/write cost of

Crw(Treecoding(κ)) = O(n) if κ = 1 and

Crw(Treecoding(κ)) = O(n2) for any κ.

Proof. For κ > 1 the receiver can construct a matrix
M of all coefficients of the received tree code blocks. If the
rank of this matrix is n the receiver can choose n rows from
the matrix and the corresponding code blocks. Likewise in
Practical Network Coding the receiver computes the inverse
of M and multiplies it with the code blocks which leads to
O(n2) disk read/write operations.

If κ = 1 then the leaves can be computed by repeatedly us-
ing Lemma 3 if the receiver has received enough code blocks
with independent coefficients. For one tree this implies that
for each node in the codeing tree the sum of all code blocks in
the left sub-tree plus the sum of all code blocks in the right
sub-tree plus the number of code blocks on the path from
the root to the node is at least 2h where h is the height of the
node. From this observation it follows that for all heights h
there exists a sub-tree with 2h code blocks. So, the tree can
be decoded with linear disk read/write operations starting
from the smallest of these trees, i.e. an uncoded block.

Theorem 7. There exists a performance hierarchy within
the Treecoding scheme:

Treecoding(κ + 1) > Treecoding(κ)

Proof. The proof is analogous to the hierarchy of FEC.
In the scenario we use κ+n+1 rounds to distribute at most
one block to κn+1 different peers. Then n random peers of
the downloading peers are activated in the last round with
unlimited bandwidth.

Treecoding with κ trees can produce at most κ root blocks.
We assume that in each round a block is distributed because
sending a block is always more advantageous than not send-
ing anything. All other at least n + 1 code blocks are either
in the left or in the right sub-tree of a coding tree. One side
has at least n

2
+1 code blocks which follows from the pigeon

hole principle. W.l.o.g. this is the left side. Now there is
positive probability that all these blocks from the left side
and n

2
− 1 blocks from the right side are chosen. Then, the

rank of the matrix is less than n and hence the availability
is less than one.

With κ+1 trees there is a policy which always works. For
this, we distribute all κ+1 root blocks and all n leaf blocks.
Assume that in the last round j ≥ 0 root nodes have been
chosen. Let ` be the missing leaf nodes from the left sub-tree
and r the missing nodes from the right sub-tree under the
root node. Now, we have r + ` + j = n. So, we use the root
blocks as forward error correction blocks to substitute left
or right leaf nodes leading to an availability of one.

Theorem 8. Treecoding performs as well as FEC:

Treecoding(κ) ≥ FEC(κ)

Proof. To show Treecoding(κ) ≥ FEC(κ) we define
for every policy in FEC an analogous policy in Treecoding.
If FEC decides to send an uncoded block, Treecoding sends
the corresponding leaf of a coding tree. If FEC sends the
i-th error correction block, then Treecoding sends the root
block of the i-th coding tree. Obviously, both strategies are
identical.

We now examine the relationship between Fixed Paircod-
ing and Treecoding with an unlimited number of trees.
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Figure 7: The scenario used in the proof of Theo-
rem 9.

Theorem 9. Treecoding outperforms Fixed Paircoding:[
κ

Treecoding(κ) > FixedPaircoding

Treecoding(5) 6≤ FixedPaircoding

Proof. For showing Treecoding ≥ FixedPaircoding
we can emulate every policy of Fixed Paircoding by choosing
leaf nodes or nodes of height one in the coding trees.

Now we show the second claim. We consider a seed and
five peers P1, . . . , P5. In round i the seed can upload at most
n
4

blocks to peer Pi. In the last round four random peers
from P1, . . . , P5 are active without transmission bounds.

Consider a policy for Fixed Paircoding which solves the
case that peers P1, . . . , P4 are chosen. Then every block pair
occurs exactly twice. If this policy chooses at least one block
to be transmitted to P5 this block combines a block pair for
the third time. Now consider a case where P5 is chosen and
the two other peers are chosen which also possess that block
pair. Then it is overrepresented and there must be a missing
code block among the other n

2
−1 block pairs. Hence, Fixed

Paircoding does not reach full availability in this case.
For Treecoding we choose five different coding trees. We

send tree nodes of height two to all peers where each peer
receives all n

4
tree nodes of the same coding tree. So, any

combination of four peers receives the four code blocks for
a sub-tree with four nodes. This corresponds to four inde-
pendent coefficient vectors over these leaf nodes which can
be used to decode each original file block.

The second claim now implies the outperformance stated
in the first claim.

Corollary 1. For some scenarios, Treecoding performs
as well as Network Coding and better than BitTorrent.

At the moment the full relationship between Paircoding
and Treecoding is unkown. We conjecture that these coding
systems do not outperform each other, i.e. for some scenarios
Paircoding outperforms Treecoding and vice versa.

Conjecture 1. Paircoding and Treecdoing are incompa-
rable:

Paircoding 6= Treecoding

BTFEC(0)

NC

FPC

TC(1)

PC

TC(n)

FEC(1)

FEC(n)

=

≤

FEC(log n)

O(n2)

O(n)

O(n · α(n))

O(n log n)

Treecoding

.

≤

Figure 8: The different coding systems pictured as
classes. An arrow indicates the relation “outper-
forms (<)” of two classes. Dashed arrows indicate
a series of relations. The pictured classes are NC:
Network Coding, FEC(κ): Uncoded blocks with κ
forward error correction blocks, TC(κ): Treecoding
with κ different trees, PC: Paircoding, FPC: Fixed
Paircoding, and BT: BitTorrent. Also indicated is
the order of the decoding read/write cost.

6. SUMMARY AND OUTLOOK
In this paper we compare different new sparse coding

classes to Network Coding and BitTorrent. We show that
the simple forward error correction scheme FEC(κ) estab-
lishes a performance hierarchy between BitTorrent and Net-
work Coding when the number of code blocks increases. We
present a restricted version of Paircoding, called Fixed Pair-
coding, classify its performance, and show that it lies be-
tween Paircoding and BitTorrent. Furthermore, we intro-
duce Treecoding and prove its superiority with respect to
FEC. Of course, Network Coding remains the optimal per-
formance scheme regarding availability.

However, Network Coding suffers from high disk read/write
complexity. While Treecoding and FEC can reduce these
costs significantly when error correction is limited, Fixed
Paircoding and Paircoding have always linear or almost lin-
ear read/write cost. Figure 8 gives an overview of the results
in this paper.

One of the main contributions of this paper is the round
model which allows to formalize and analytically compare
different block based file sharing systems. Up to now the
only available method has been empirical experiments us-
ing simulations or observations in existing peer-to-peer net-
works. The presented results indicate that this methodology
is manageable and leads to new insights for file sharing sys-
tems.

For future research the relationship between Paircoding
and Treecoding needs to be investigated as well as other
relationships between systems presented here. At the mo-



ment we are preparing papers with simulation results that
underline the practical implications of our findings. The
main open question is whether an efficient O(n · log n) or
even O(n) disk time file sharing system exists that performs
as well as Network Coding. Furthermore, we conjecture for
Treecoding that its read/write cost (see Theorem 6) can be
improved to O(κ · log n · n) for κ < n/ log n.
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