
Why Robots Need Maps?

Miroslaw Dynia1, Jakub Lopuszański2, and Christian Schindelhauer3

1 DFG Graduate College ”Automatic Configuration in Open Systems”,
University of Paderborn, Germany,

mdynia@uni-paderborn.de
2 Institute of Computer Science, University of Wroclaw, Poland,

jakub.lopuszanski@ii.uni.wroc.pl
3 Computer Networks and Telematics, University of Freiburg, Germany,

schindel@informatik.uni-freiburg.de

Abstract. A large group of autonomous, mobile entities e.g. robots ini-
tially placed at some arbitrary node of the graph has to jointly visit all
nodes (not necessarily all edges) and finally return to the initial position.
The graph is not known in advance (an online setting) and robots have to
traverse an edge in order to discover new parts (edges) of the graph. The
team can locally exchange information, using wireless communication
devices.

We compare cost of the online and optimal offline algorithm which knows
the graph beforehand (competitive ratio). If the cost is the total time of
exploraiton, we prove the lower bound of Ω(log k/ log log k) for compet-
itive ratio of any deterministic algorithm (using global communication).
This significantly improves the best known constant lower bound. For
the cost being the maximal number of edges traversed by a robot (the
energy) we present an improved (4− 2/k)-competitive online algorithm
for trees.

1 Introduction and Our Results

We are interested in the issue of coordination of a team of k autonomous robots.
We would like the team to be driven by a distributed algorithm stored in the
local memory and executed using the local computational power of a robot.
The team’s goal is to jointly visit all nodes of an unknown, but labeled graph
G. To let the team cooperate we must allow it to exchange information about
new findings and agree upon the strategy of the exploration. We can allow full
communication scheme (global communication), yet it is more realistic to allow
only local communication. Robots are equipped with wireless radio devices with
a bounded communication radius which allows only the neighboring robots to
communicate.
? This research is partially supported by the DFG-Sonderforschungsbereich SPP

1183: ”Organic Computing. Smart Teams: Local, Distributed Strategies for Self-
Organizing Robotic Exploration Teams” and by MNiSW grant number N206 001
31/0436, 2006-2008

The team is initially placed in a node of the unknown graph G modeling the
network or e.g. an unknown terrain, where nodes correspond to the interesting
locations, and edges model the accessibility between locations. Additionally, we
assume that all edges and nodes of G are labeled and thus can be locally dis-
tinguished by a robot. A goal for the robots is to jointly visit all nodes of the
graph and finally return to the initial node. We consider two cost models. In the
first model we assume the cost measure to be the total time of the exploration
where in the second model it is the maximal energy (number of edges) used by
a robot.

It is clear that knowing the graph beforehand (offline setting), the team
would agree on the best strategy before the exploration and then fully explore
the graph without using communication at all. Intuitively, the cost of such an
exploration should be smaller than the cost needed in the online setting where
the graph is not known in advance.

The competitive ratio is the ratio between the cost of the online and the
optimal offline algorithm. Competitive ratio of 1 would mean that robots can ef-
ficiently explore even though the “map of the graph” is not known. In fact, for the
time model we show that this ratio is significantly larger even assuming the global
communication (see Sect. 3). We show the lower bound of Ω (log k/ log log k) for
the competitive ratio of any deterministic graph exploration algorithm using
k robots. This is a significant improvement comparing to the constant factor
bounds known so far. For the energy model (Sect. 4) we show the (4 − 2/k)-
competitive algorithm which explores trees and uses strictly local communication
(in fact robots communicate only in the root of tree).

2 Prior and Related work

There are many results (e.g. [1–6]) concerning exploration of a graph using small
number of robots. Authors of [5] present strategies for a robot which has to
traverse all edges minimizing the number of edge traversals. They bound com-
petitive ratio (an overhead related to the lack of topology’s knowledge) of their
algorithms for several classes of graphs. Authors of [2] show a strategy for two
robots to explore (in polynomial time) all nodes of an unlabeled, strongly con-
nected, directed graph.

The real impact of robot’s cooperation can be observed by studying the
algorithms which use larger number of robots (k > 2). Robots can collectively
perform many tasks (e.g. black-hole search [7, 8] or rendezvous [9]) but here
we focus on the problem of an exploration. Dealing with a group of robots,
there are many coordination problems e.g. gathering or pattern formation [10]
which a team might exercise during the exploration of an unknown terrain (or
unlabeled graph like in [2, 11]). Those problems might arise from the sensor
inaccuracy, odometry error related to the movement or from some computational
problems. However, in many publications this is overcome assuming that either
the exploration concerns the network or the terrain is represented by the labeled
graph in which these problems do not occur.

The problem of collective tree exploration is addressed in [12]. Authors
present the lower bound of 2 − 1/k for competitive ratio of an arbitrary ex-
ploration algorithm using k robots. Additionally, they prove that if no commu-
nication is allowed, it is not possible to explore efficiently (competitive ratio
Ω(k)). Their online algorithm for tree exploration uses global communication
and achieves competitiveness of O(k/ log k). Additionally, in [13] we present on-
line algorithms for exploration of so called sparse trees and e.g. for trees D in
height, which can be embedded in 2-dimensional grids, the algorithm achieves
competitive ratio of O(

√
D). The problem with the cost model related to the

maximal energy used by a robot is addressed in [14]. Authors present the lower
bound of 3/2 and distributed 8-competitive algorithm for trees which uses only
local communication.

In [15] the group of simple robots (could be represented by the primitive final
automata) fills the integer grid subject to minimize the makespan. Initially, the
robots are standing outside the grid (by so called doors) and can consecutively
enter the grid, with the additional assumption that only one robot can occupy
one node. They develop optimal solution for the single-door case and O(log(k +
1))-competitive algorithm for multi-door case.

3 The Time Model

Consider an arbitrary graph G = (E, V) with a distinguished node s ∈ V .
The team of k autonomous mobile robots starts in s, visits all nodes of G and
finally returns to s. It takes one time step for the robot to traverse an edge and
since there are many synchronized robots, there might be many edges which are
traversed in parallel by the team during one time step.

In this chapter we focus on the total time of such an exploration and fur-
thermore we compare it to the time needed by the optimal offline algorithm. We
show that for each deterministic algorithm there exists a tree-like graph which
cannot be efficiently explored. Although there is a local communication granted
for robots we show that having even global communication does not help if we
do not know the map in advance. This means that in the worst case no online
algorithm can explore efficiently, if compared to the time needed by the optimal
offline algorithm.

First in the Sect. 3.1 we introduce the Jellyfish tree which is used in Sect. 3.2
to prove the lower bound of Ω (log k/ log log k) for competitive ratio of an arbi-
trary deterministic exploration algorithm A.

3.1 The Jellyfish tree

We define a class of trees which contains the lower bound tree for any arbitrary
deterministic algorithm. Assume t > k and take some permutation σ of set 1
through k. Jellyfish tree J(k, t, σ) consists of k subtrees (tentacles) numbered
from 1 trough k, connected by the root (see Fig. 1).

The tentacle consists of a poison of a certain size which is attached to the
single path of the length t. Each level of poison (but the first one) consists of t
nodes, all connected to the main node of the previous level. The main node is
the one which was visited by any robot as the last one on this level. Therefore,
all nodes on the level l have to be visited before any other node on the level l+1
is visited. This also means that any algorithm using k′ ≤ k robots traversing one
tentacle of size si needs at least t + 2 t·l

k′ time steps to reach the main node on
level l. However, if the configuration of the main nodes is known, it takes only
t + 2l to do the same. The complete exploration of this tentacle needs at least
2t + 2 t·si

k′ if main nodes are not known.
The size of a poison contained in the i-th tentacle is defined by the function

sσ(i) :=
⌈

k

log k
· 1

i

⌉
,

where the permutation σ allows to rearrange the order of poisons. Later, in
Sect. 3.2 we define the permutation σA for the algorithm A in such a way, that
the sizes of poisons are in the inconvenient configuration for the algorithm.

si σ−1(k)

σ−1(1)

Poison with ID=σ−1(i)

s1

s2

JELLYFISH TREE J(t, k, σ)

poisons

t

s3

t

σ−1(2)

tentacle

main
nodes

Fig. 1. Definition of a poison and the Jellyfish tree J(t, k, σ).

3.2 Online Analysis

For an arbitrary (yet fixed) algorithm A we define a particular lower bound tree
J(t, k, σA) by defining a permutation σA and taking an arbitrarily large t (it
must be at least t > k). The configuration of the main nodes within J(t, k, σA)
is also defined by A. The permutation σA is constructed in such a way, that it

maximizes the ratio between the exploration time of A and an optimal offline
algorithm on the same tree.

We start with the observation that being independent on the permutation
and other parameters of the Jellyfish tree, the offline exploration is easy.

Lemma 1. Assuming that the tree is known beforehand (i.e. t > k and σ are
known), there exists the algorithm with k robots which explores J(t, k, σ) in O(t)
steps.

Proof. The graph J(t, k, σA) is h := t + k/ log k in height and has at most

2tk + (tk/ log k) ·
k∑

i=1

1/i = O(tk)

nodes. Therefore we have h = O(t) and n/k = O(t) and using e.g. the approxi-
mation algorithm from [14] we can get the algorithm exploring in time O(t). ut

To prove a bad performance of the algorithm A we study the performance
of the similar algorithm which works in a synchronized rounds. We define a
class of synchronized algorithms (see Alg. 1) which explores the given Jellyfish
tree. The particular algorithm within this class is fully defined by the sequence
f

(r)
i (1 ≤ i ≤ k, r ≥ 1) which dictates the distribution of robots among the

tentacles within the round. Therefore, for each round r we require f
(r)
i ≥ 0 and

additionally

k∑
i=1

f
(r)
i = k .

During a round, the value f
(r)
i defines the size of the subgroup assigned to explore

the i-th tentacle. The exploration within the assigned tentacles is carried out in
parallel, and at the end of the round, all robots meet in the root to make a new
assignment for the next round.

Define a
(r)
j := 1 for j ≤ f

(r)
1 and otherwise a

(r)
j := q, where q fulfills

q−1∑
i=1

f
(r)
i < j ≤

q∑
i=1

f
(r)
i .

If the j-th robot goes to the tentacle a
(r)
j it results in the distribution described

by f
(r)
i . The sequence f

(r)
i is known to each robot and thus the team can easily

agree upon the assignment.

Algorithm 1 Synchronized Algorithm
Require: id← robot’s ID

r ← 1 // round counter
while (J is not yet explored) do

j ← a
(r)
id // the assigned tentacle

v ← the furthest explored main node in the j-th tentacle
move to v (using a simple path in tree)
l← 0
while (l < f

(r)
j and j-th tentacle is not yet explored) do

collectively visit all t nodes connected by an edge to v
v ← the next main node connected to v
l← l + 1

end while
return to the root (using a simple path in tree)
r ← r + 1

end while

Collective exploration carried out in the second ‘while‘ loop is executed by
the team of k′ = f

(r)
j robots initially located in the main node v. There are t

edges outgoing from v (one of them is connected to the main node of the further
level). The team spreads itself uniformly among those edges, end explores it in
parallel. Since there are more edges than robots, this must be repeated dt/k′e
times until all edges on this level are explored. The main node on the further
level is known and the team moves there to explore further levels. The loop
breaks when there are f

(r)
j additional levels explored, which takes

k′ · (2 · dt/k′e + 1) − 1 ≤ 5t

time steps.
Traveling to the first main node takes t steps, traveling along the already

explored main nodes inside of a poison takes also at most t steps (as we have
si < k < t). As we have seen, the further exploration takes at most 5t steps
and return to the base takes at most 2t steps. This can be summarized in the
following lemma.

Lemma 2. The r-th round of the Async algorithm takes at most 9t time steps
and there are f

(r)
j new levels explored in the j-th tentacle (if the exploration is

not finished earlier). The configuration of the main nodes does not influence this
performance.

Now we show how to “synchronize” an arbitrary online algorithm A exploring
the J(k, t, σ). We find the matching algorithm within the class of synchronized
algorithms by splitting the execution of A in the time intervals T1, T2, . . . , TR

each t in length (the last interval might be shorter). For 1 ≤ r ≤ R define f
(r)
i as

the number of robots which visit the poison contained in the i-th tentacle during
time interval Tr. If klazy ≤ k robots visit no poison during this interval, increase

f
(r)
i for an arbitrary i by klazy. Observe that no robot can visit two poisons

during one time interval, and thus for each r we have
∑

i f
(r)
i = k. We say that

the deterministic algorithm A defines the sequence f
(r)
i . If the synchronized

algorithm uses the sequence f
(r)
i defined by the A algorithm, then it is called a

synchronized algorithm based on A and we denote it by Async.

Lemma 3. If A explores the jellyfish tree J in time T then Async explores the
same tree in at most dT/te rounds.

Proof. The A algorithm consecutively uses at most f
(1)
j , f

(2)
j , . . . f

(R)
j robots to

explore the j-th tentacle in the time interval T1, . . . TR (where R = dT/te). Let s
be the size of the poison in this tentacle. The poison contains st edges and each
has to be traversed by a robot thus

R∑
r=1

(t · f (r)
j) ≥ t · s ,

where t · f (r)
j is a maximal number of edges which can be traversed in t steps by

f
(r)
j robots.

In Async algorithm there are exactly f
(r)
j robots exploring the j-th tentacle

in the r-th round, and they make progress of f
(r)
j additional levels. Summing up

all rounds we have
∑R

r=1 f
(r)
j levels explored. We know that this sum is at least

s, and thus Async completely explores this tentacle in R rounds.
Since j was arbitrarily chosen this holds for an arbitrary tentacle, which

means that the whole jellyfish tree will be also explored by Async in R = dT/te
rounds. ut

Let CA[J] and CAsync [J] be the time the algorithms A and Async need for the
exploration of J . By Lemma 3 the Async algorithm explores J in dCA[J]/te
rounds, and each round takes at most 9t time steps (Lemma 2). We have
CAsync [J] ≤ 9t · dCA[J]/te ≤ 18 · CA[J]. The synchronization results in only a
constant factor increase in the time of an algorithm exploring an arbitrary Jel-
lyfish tree.

Lemma 4. Let A be the algorithm using k robots to explore J := J(k, t, σ)
Jellyfish tree (with arbitrarily σ and t). There holds

CAsync [J] ≤ 18 · CA[J]

where Async is a synchronized algorithm based on A.

Now, we show how the adversary reorders the sizes of poisons for Async to
make the exploration harder. If the online exploration is hard for Async, it is
also hard for A (by Lemma 4). Consider one round of a synchronized algorithm
Async and assume that the decision on the size of a group assigned to a particular

poison for this round is already made. The adversary orders the poison’s size in
such a way that large groups of robots get small-sized poisons and small groups
of robots get large-size poisons. More precisely, if we sort groups of robots in an
increasing order of their sizes, the (still unexplored) assigned poisons are sorted
in a decreasing order of their sizes.

If after this round some poison with id i gets fully explored and then σ(i) gets
fixed. All remaining (not fully explored) poisons are subject to reordering done
at the beginning of the next round. As the adversary reorders sizes of (not fully
explored) poisons, it partially defines permutation σA, which gets fully defined
at the end of the exploration.

In Lemma 5, we show that the adversarial order of poison’s size increases the
exploration time for the algorithm Async based on algorithm A. We prove that
the progress of an exploration done by Async (measured by the deepest visited
node) is small, assuming that the Jellyfish tree is constructed on the permutation
σA defined above.

Lemma 5. At the end of the r-th round of algorithm Async no node at distance
greater than y(r) := t + d(2 log k)re from the root is visited (where k is large, at
least log k ≥ 5).

Proof. Assume that v is visited in the first round and it is at distance t +
d2 log ke+1 ≥ t+11 from the root. The node v lies within the poison of the j-th
tentacle and there are f

(1)
j ≥ 11 robots exploring this poison of size s ≥ 11 in

this round. There are at least k/2 tentacles which contain a poison smaller than
11 and each of them is also explored by at least 11 robots (adversarial order of
poison’s size). This gives 11 · k/2 > k robots exploring the smallest tentacles in
this round.

Assume that at the beginning of the round r > 1 (at the end of the round r−
1) there is no visited node which lies deeper than at distance y(r−1). Furthermore,
assume that all nodes up to the distance y(r−1) are already visited. Now the
algorithm declares the distribution f

(r)
i for this round and the adversary sorts

tentacles in a reversed order of their sizes to an order of f
(r)
i .

Assume that there is a node v which is visited before the end of this round
and lies at the distance y(r)+1 from the root. The node v is contained in the j-th
tentacle for which Async has had many robots exploring it during the round r.
Certainly, Async needs much “exploration power” to rapidly explore many levels
during one round. To explore additional y(r) − y(r−1) levels of the j-th tentacle,
algorithm Async needs f

(r−1)
j ≥ y(r) − y(r−1) robots, and therefore we have

f
(r−1)
j ≥ (log k)r−1 · (2 log k − 2) .

For i = dk/ log k · 1/(2 log k)r+1e we have si ≤ y(r) and for i′ = bk/ log k ·
1/(2 log k)rc we have si′ ≥ y(r−1) and so there are at least

i′ − i ≥ k

log k · (2 log k)r−1
· (1 − 1/ log k)

tentacles which end between levels y(r−1) and y(r). All those tentacles have at
least f

(r−1)
j robots assigned to them in this round (because the adversary has

sorted the tentacles in a reversed order). This means that there were at least

f
(r)
j · (i′ − i) ≥ k · (2 − 4/5) > k

robots exploring tree in the r-th round. This contradicts the fact that Async uses
only k robots to explore the Jellyfish tree. ut

Using Lemma 5 we know that in the r-th round the algorithm Async makes
only a small progress. If the largest poison (containing a poison of size k/ log k)
is explored in the R-th round then y(R) ≥ t + k/ log k. It means that (log k)R ≥
k/ log k and so

R = Ω

(
log k

log log k

)
,

where each round takes Θ(t) time steps.
The algorithm A is at most 18 times faster than Async by the exploration of

J(t, k, σA) (see Lemma 4) and thus A needs also Ω
(
t · log k

log log k

)
time steps. On

the other hand, from Lemma 1 we know that O(t) steps suffice to explore this
tree. Since we have chosen A to be the arbitrary algorithm using k robots for
the collective graph exploration we have proved the following theorem:

Theorem 1. For every online exploration algorithm A using k robots there ex-
ists a graph for which the total time of the exploration is at least

Ω

(
log k

log log k

)
longer than the optimal time needed to explore this graph offline by k robots.

4 Algorithm for the Energy Model

In this section we consider a tree T = (E, V) rooted at v0 ∈ V consisting of n
uniform labeled edges and D in height measured by the number of edges on the
longest path from v0 to a leaf. All k robots with an unique ID drawn from the
set 1, 2, . . . , k are initially placed in v0. Robots can communicate when they are
in the same node and a goal of such a team is to jointly explore the unknown
tree.

Assume that whenever a robot traverses an edge, it incurs a cost of one energy
unit. We are interested in costs of the exploration defined as the maximal energy
used by a robot. Once again we compare the cost of the online algorithm to the
cost of the optimal offline algorithm to obtain competitive ratio. In [14] the lower
bound of 3/2 as well as 8-competitive online algorithm exploring tree using a
team of k robots were shown. Here we improve this result by introducing 4−2/k-
competitive algorithm. This confirms that the energy model is strictly weaker

than the time model for which the first non-constant lower bound is presented
in the previous section.

In the energy model robots do not care about an overall time of the explo-
ration. In some situations halting and waiting for a new information may be
more desirable for a robot than further exploration. This is exactly what hap-
pens in our algorithm. We have a group of k robots (R1, R2, . . . Rk) and during
a round, there is only one robot which is active. All other robots are waiting in
the root v0 of the tree. The active robot first goes to the node where the robot
active in the previous round has given up its exploration. Then it continues this
exploration for a certain number of steps, and finally returns to the root v0. The
algorithm is described in details on the Fig. 2.

Algorithm 2 PushDfs
h← 1
r ← 1
ei ← 0 for all 1 ≤ i ≤ k

while (T is not yet explored) do
id← argmin{ei : 1 ≤ i ≤ k}
Rid travels to vr−1

e← 0
repeat

Rid follows a DFS step
e← e + 1
h← height of the visited subtree

until (e ≥ 2h)
hr ← h
vr ← actual position of Rid

Rid returns to v0 //this takes at most hr edges
eid ← eid + |path(v0, vr−1)|+ 2hr + |path(vr, v0)|
r ← r + 1

end while

The “while” loop corresponds to one round r, and there is only one robot Rid

which moves during this round. Variable hr denotes the height of the subtree
visited by a robot in all rounds from 1 through r and the variable ei holds the
energy used so far by the i-th robot.

In the r-th round, the active robot first travels to the node vr−1 at which the
previous robot stopped exploring (it takes at most hr−1 energy units). Then it
continues to traverse consecutive DFS edges (“repeat” loop) until it collects 2h
of it, where h is the height of the subtree visited by any robot (also the actual
active one) so far. During this loop the robot traverses 2hr edges and then finally
returns to v0 (which certainly takes at most hr energy units). This gives us an
upper bound of hr−1 +3hr on the energy used by a robot during the round r. In
the first round (r = 1) active robot is the first working robot ever, so it uses only

0 + 3h1 energy units (we lay h0 = 0). The last round q is perhaps shorter and
it takes hq−1 + w because a robot gets to the root already during the “repeat”
loop and thus does not have to pay any extra costs for the return.

Let ei be the energy of the robot Ri after completely exploring the tree and
E =

∑k
i=1 ei be the total energy used by all robots. We have

E ≤ 3h1 +
q−1∑
r=2

(hr−1 + 3hr) + hq−1 + w = 4 ·
q−1∑
r=1

hr + w

as the upper bound for this energy. On the other hand we know that the robot
active in the round r ≤ q − 1 has done exactly 2hr steps of the DFS tour (the
last one exactly w steps), which for the whole tree takes exactly 2n energy units.
It must be that (

∑q−1
i=r 2hr) + w = 2n and thus we have

E ≤ 4n ≤ 2k ·OPT

where OPT is the energy cost of the optimal offline exploration. Indeed, OPT ≥
2n/k since there are n edges and each has to be traversed twice by at least one
robot.

Let emin = min{ei : 1 ≤ i ≤ k} and emax = max{ei : 1 ≤ i ≤ k}
be respectively the minimal and the maximal energy used by robots Rmin and
Rmax. One tour during a round takes at most hq−1 + 3hq ≤ D + 3D = 4D
energy units of an active robot. The active robot is chosen to be the one with
the smallest energy used so far and therefore we have emax−emin ≤ 4D. Certainly
OPT ≥ 2D, because there is at least one robot which has to reach the furtherest
leaf at distance D and return to v0. This results in the upper bound

emax − emin ≤ 2OPT .

Knowing the span of values of the elements of the sequence ei we can use the
following upper bound on the maximal value

emax ≤
∑k

i=1 ei − (emax − emin)
k

+ (emax − emin)

and therefore we obtain

emax ≤
2k ·OPT

k
+ (1 − 1/k) · 2OPT ≤ (4 − 2/k) ·OPT .

This analysis can be slightly improved (at the cost of readability) but it
also can be proved that the competitive ratio of this algorithm asymptotically
converges to 4.

Theorem 2. The PushDfs algorithm explores an arbitrary tree and obtains the
competitive ratio of at most 4 − 2/k for the online energy model.

5 Conclusions

We have presented the lower bound of Ω (log k/ log log k) for a competitive ratio
in the time model of the exploration. This is a significant improvement over
the recent 2 − 1/k lower bound presented in [12]. The best algorithms for trees
achieve a competitiveness of O(k/ log k) and O(

√
D) (for sparse trees) which

leaves a wide area for further research. Moreover, our result proofs that the
lack of a map is essentially harmful in the time related online graph exploration
problem (and this remains even when we restrict ourself only to trees).

For the energy cost model there is an online algorithm with constant compet-
itive ratio for trees. Using a simple algorithm the team of k robots can explore
a tree using only 4 − 2/k times the energy of the offline solution. This does not
match yet the lower bound of 3/2 presented in [14].

References

1. Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment.
In: Proc. of the 6th Annual ACM Conference on Computational Learning Theory
(COLT 1993), Association for Computing Machinery (1993) 277–286

2. Bender, M., Slonim, D.: The power of team exploration: two robots can learn
unlabeled directed graphs. In: Proc. of the 35th Annual Symposium on Foundations
of Computer Science (FOCS 1994), IEEE Computer Society (1994) 75–85

3. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a
pebble: Exploring and mapping directed graphs. Information and Computation
176 (2005) 1–21

4. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Proc. of
the 13th Annual European Symposium on Algorithms (ESA 2005), Springer Verlag
(2005) 11–22

5. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical
Computer Science 326 (2004) 343–362

6. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic
memory. In: Proc. of ACM-SIAM Symp. on Discrete Algorithms (SODA 2007).
(2007)

7. Dobrev, S., Flocchini, P., Kralovic, R., Ruzicka, P., Prencipe, G., Santoro, N.:
Black hole search in common interconnection networks. Networks 47 (2006) 61–71

8. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in
arbitrary networks: optimal mobile agent protocols. In: Proc. of the 21st Annual
Symposium on Principles of Distributed Computing (PODC ’02). (2002) 153–162

9. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46 (2006) 69– 96

10. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. Journal of Robotic Systems 13 (1996) 127–139

11. Das, S., Flocchini, P., Nayak, A., Santoro, N.: Distributed exploration of an un-
known graph. In: Proc. of the Structural Information and Communication Com-
plexity (SIROCCO 2005), Springer Verlag (2005) 99–114

12. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration.
Networks 48 (2006) 166–177

13. Dynia, M., Kuty lowski, J., Meyer auf der Heide, F., Schindelhauer, C.: Smart
robot teams exploring sparse trees. In: Proc. of the 31st International Symposium
on Mathematical Foundations of Computer Science (MFCS 2006), Springer Verlag
(2006) 327–338

14. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree explo-
ration. In: Proc. of the 19th International Conference on Architecture of Computing
Systems (ARCS 2006), Springer Verlag (2006) 341–351

15. Hsiang, T., Arkin, E., Bender, M., Fekete, S., Mitchell, J.: Algorithms for rapidly
dispersing robot swarms in unknown environments. In: Proc. of the 5th Inter-
national Workshop on Algorithmic Foundations of Robotics, Springer Berlin /
Heidelberg (2002) 77– 94

