You are here: Home Teaching/Lehre Seminar Computer Networks and …

Seminar Computer Networks and Telematics, SoSe 2024

Seminar for Master students of Computer Science and Embedded Systems Engineering with research topics relevant to the chair.

News

  • 17.04.2024-22.04.2024: If you want to participate, submit your choice of topics to the forum of  ILIAS

Dates

  • 1st meeting, 18.04.2024, 16-18  (room 051-00-006), presentation of the topics, organization
  • 17.04.2024-22.04.2024:  submit 3 topics of your choice to the forum of ILIAS
  • 22.07.2024, 09-17, block seminar day 1 (room 051-00-006)
  • 23.07.2024, 09-17, block seminar day 2 (room 051-00-006)
  • 24.07.2024, 09-17, block seminar day 3 (room 051-00-006)

Contents

We discuss up-to-date topics of distributed algorithms, cryptography, localization and wireless communication. Topics appear here soon.

    1. Localization
      1. Shuai Huang, and Ivan Dokmanić. "Reconstructing point sets from distance distributions." IEEE Transactions on Signal Processing 69 (2021): 1811-1827. (JB)

      2. Kreković, Miranda, Ivan Dokmanić, and Martin Vetterli. "Shapes from echoes: uniqueness from point-to-plane distance matrices." IEEE Transactions on Signal Processing 68 (2020): 2480-2498. (JB)

      3. Palmér, Tobias, Giuseppe Bianco, Mikael T. Ekvall, Lars-Anders Hansson, and Kalle Åström. "Calibration, positioning and tracking in a refractive and reflective scene." In 2016 23rd international conference on pattern recognition (ICPR), pp. 3810-3815. IEEE, 2016. (JB)

      4. Plinge, A., Fink, G.A. and Gannot, S., 2017. Passive online geometry calibration of acoustic sensor networks. IEEE Signal Processing Letters, 24(3), pp.324-328.(CS)
      5. Dokmanić, I., Parhizkar, R., Walther, A., Lu, Y.M. and Vetterli, M., 2013. Acoustic echoes reveal room shape. Proceedings of the National Academy of Sciences, 110(30), pp.12186-12191. (CS)
    2. Cryptography
      1. Blum, M., 1983. Coin flipping by telephone a protocol for solving impossible problems. ACM SIGACT News, 15(1), pp.23-27. (CS)
      2. Goldreich, O., Micali, S. and Wigderson, A., 1986, October. Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986) (pp. 174-187). IEEE. (CS)
      3. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P. and Maxwell, G., 2018, May. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE symposium on security and privacy (SP) (pp. 315-334). IEEE. (CS)
      4. Hoffmann, M., Klooß, M. and Rupp, A., 2019, November. Efficient zero-knowledge arguments in the discrete log setting, revisited. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (pp. 2093-2110). (CS)
      5. Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I. and Cammarota, R., 2019. Post-quantum lattice-based cryptography implementations: A survey. ACM Computing Surveys (CSUR), 51(6), pp.1-41. (CS)
      6. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T. and Tunge, T., 2021, May. Lattice-based proof of shuffle and applications to electronic voting. In Cryptographers’ Track at the RSA Conference (pp. 227-251). Cham: Springer International Publishing. (CS)
      7. Goldreich, O. and Oren, Y., 1994. Definitions and properties of zero-knowledge proof systems. Journal of Cryptology, 7(1), pp.1-32. (CS)
      8. Morais, E., Koens, T., Van Wijk, C. and Koren, A., 2019. A survey on zero knowledge range proofs and applications. SN Applied Sciences, 1, pp.1-17. (CS)
      9. Wan, G., Johnson, A., Wails, R., Wagh, S. and Mittal, P., 2019. Guard placement attacks on path selection algorithms for Tor. Proceedings on Privacy Enhancing Technologies2019(4). (CS)
      10. Fruhwirth, C., 2005. New methods in hard disk encryption. (CS)
      11. Ronald L. Rivest, Adi Shamir, and Yael Tauman. 2001. How to Leak a Secret. In Proceedings of the 7th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology (ASIACRYPT '01). Springer-Verlag, Berlin, Heidelberg, 552–565.
    3. Visual Cryptography
      1. Naor, M. and Shamir, A., 1995. Visual cryptography. In Advances in Cryptology—EUROCRYPT'94: Workshop on the Theory and Application of Cryptographic Techniques Perugia, Italy, May 9–12, 1994 Proceedings 13 (pp. 1-12). Springer Berlin Heidelberg. (CS)
      2. Aronov, B., Davis, A.R., Dey, T.K., Pal, S.P. and Prasad, D.C., 1995, September. Visibility with reflection. In Proceedings of the eleventh annual symposium on Computational geometry (pp. 316-325). (SM)
      3. Liu, Z., Zhang, Z. and Fang, H., 2023. Approximating complex 3D curves using origami spring structures. Communications Engineering2(1), p.90. (SM)
      4. Aronov, B., Davis, A.R., Dey, T.K., Pal, S.P. and Prasad, D.C., 1998. Visibility with multiple reflections. Discrete & Computational Geometry, 20, pp.61-78. (SM)
      5. Aronov, B., Guibas, L.J., Teichmann, M. and Zhang, L., 1998, December. Visibility queries in simple polygons and applications. In International Symposium on Algorithms and Computation (pp. 358-367). Berlin, Heidelberg: Springer Berlin Heidelberg. (CS)
    4. MIMO and Near-Field
      1. Halldórsson, M.M., 2013, September. Modeling reality algorithmically: the case of wireless communication. In International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (pp. 1-5). Berlin, Heidelberg: Springer Berlin Heidelberg. (CS)
      2. Chuah, C.N., Tse, D.N.C., Kahn, J.M. and Valenzuela, R.A., 2002. Capacity scaling in MIMO wireless   systems under correlated fading. IEEE Transactions on Information theory, 48(3), pp.637-650. (CS)
      3. McKay, M.R., Collings, I.B. and Tulino, A.M., 2009. Achievable sum rate of MIMO MMSE receivers: A general analytic framework. IEEE Transactions on Information Theory, 56(1), pp.396-410. (CS)
      4. N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich and M. Coulon, "Direct Localization for Massive MIMO," in IEEE Transactions on Signal Processing, vol. 65, no. 10, pp. 2475-2487, 15 May15, 2017, doi: 10.1109/TSP.2017.2666779. (CS)
      5. Ros, F.J., Martinez, J.A. and Ruiz, P.M., 2014. A survey on modeling and simulation of vehicular networks: Communications, mobility, and tools. Computer Communications, 43, pp.1-15. (CS)
    5. Peer-to-Peer Networks
      1. Giakkoupis, G., Sauerwald, T., Stauffer, A. (2014). Randomized Rumor Spreading in Dynamic Graphs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_42. (SN)

      2. Giustina, D. D., Londero, C., Piazza, C., Riccardi, B., Romanello, R.: Quantum encoding of dynamic directed graphs. Journal of Logical and Algebraic Methods in Programming, vol. 136, (2024). https://doi.org/10.1016/j.jlamp. (SN)

      3. Lau, L. C., Tung, K. C., Wang, R.: Cheeger Inequalities for Directed Graphs and Hypergraphs using Reweighted Eigenvalues. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC 2023), pp. 1834–1847. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3564246.3585139 (SN)

      4. Dinitz, Y., Dolev, S. & Kumar, M. Local Deal-Agreement Algorithms for Load Balancing in Dynamic General Graphs. Theory Comput Syst 67, 348–382 (2023). https://doi.org/10.1007/s00224-022-10097-6 (SN)

      5. Sauerwald, T. and Sun, H., 2012, October. Tight bounds for randomized load balancing on arbitrary network topologies. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (pp. 341-350). IEEE. (CS)
      6. Zhang, Y. and Bojja Venkatakrishnan, S., 2023, May. Kadabra: adapting Kademlia for the decentralized web. In International Conference on Financial Cryptography and Data Security (pp. 327-345). Cham: Springer Nature Switzerland. (CS)
      7. Donenfeld, J.A., 2017, February. WireGuard: Next Generation Kernel Network Tunnel. In NDSS (pp. 1-12).

Supervisors

  • CS: Christian Schindelhauer (schindel at tf dot uni dash freiburg dot de)
  • JB: Joan Bordoy (bordoy at informatik dot uni dash freiburg dot de)
  • SM: Sneha Mohanty (mohanty at informatik dot uni dash freiburg dot de)
  • SN: Saptadi Nugroho (saptadinugroho at gmail dot com)

Schedule

No.First nameNameILIAS-IDTopicShort titleDayPresentation Date
1 Feichen Ou fo49 101 Point sets from Distance Distributions Mo 22.7.2024 09:00
2 Taha Tiryaki tt134 102 Shapes from Echoes Mo 22.7.2024 09:45
3 Kai Dörsing kd147 103 Refractive, Reflective Scene Mo 22.7.2024 10:30
4 Raymond Schätzle rs505 507 WireGuard Mo 22.7.2024 11:15
5 Christoph Ullinger cu35 209 Guard Placement TOR Mo 22.7.2024 13:00
6 Sid Moreira da Silva sm511 506 Kadabra Mo 22.7.2024 13:45
7 Manik Arora ma441 501 Rumor Dynamic Graphs Mo 22.7.2024 14:30
8 Tristan Busch tb314 502 Quantum Directed Graphs Mo 22.7.2024 15:15
9 Brian Michelson bm187 504 Cheeger DiGraph Mo 22.7.2024 16:00
10 Ashwin Vazhappilly av261 201 Coin Flipping Telephone Tu 23.7.2024 09:00
11 Junchen Wang jw771 202 Proofs yield nothing Tu 23.7.2024 09:45
12 Marvin Stölzel ms2144 207 ZK Range Proofs Tu 23.7.2024 10:30
13 Tobias Bürger tb305 211 Leak a Secret Tu 23.7.2024 11:15
14 Jan-Christoph Orlanski jo140 208 Survey ZKP Tu 23.7.2024 13:00
15 Maximilian Herych mh1284 203 Bulletproofs Tu 23.7.2024 13:45
16 Mattis Peter Bless mb791 204 ZK Discrete Setting Tu 23.7.2024 14:30
17 Jan Oreans jo83 205 Lattice Codes Tu 23.7.2024 15:15
18 Jürgen Mattheis jm622 210 Hard Disk Encryption Tu 23.7.2024 16:00
19 Jan Lachmann jl469 301 Visual Crypto We 24.7.2024 10:00
20 Michael Pospiech mp465 302 Visibility Reflection We 24.7.2024 10:45
21 Max Herwig mh1346 304 Visibility Multi-Reflection We 24.7.2024 11:30
22 Rushang Phira rp152 305 Visibility Polygons We 24.7.2024 12:15
23 Ria Aritonang ra53 303 3D Curves Origami We 24.7.2024 14:00
24 Saurabh Dome sd393 401 Modeling Reality We 24.7.2024 14:45
25 Lukas Engel le123 405 Vehicular Networks We 24.7.2024 15:30

Deliverables

For a successful participation you have to 

  1. Write a written 2-5 pages report (LaTeX) and upload it using ILIAS until 10.07.2023 (1/4)
  2. Give a 30 minute final presentation during the block seminar (upload slides to ILIAS) (1/2)
  3. Survive the 15 minute discussion after your presentation (1/4)

Presentations may be recorded.  Attendance to 16 final presentations is mandatory.